带移植说明的xmodem源码(STM32)//移植时,需要修改该函数//串口收发,实用查询方式。
voidxm_port_write(uint8*ch){ while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET); USART1->DR=*ch;}//串口接收函数,需要移植sint8xm_port_read(uint8*ch){ if(USART_GetFlagStatus(USART1,USART_IT_RXNE)!=RESET) { *ch=USART_ReceiveData(USART1); return1; } return0;}//在定时中断里调用该函数//定时时间5msvoidxm_timer(void){ xmodem_timeout++;}
2025/1/29 3:13:31 4KB xmodem 源码 代码 移植
1
WIFI芯片ESP8266开发视频教程(实践篇)本套教程分为三部分基础篇,提高篇,实战篇,由于CSDN上传文件限制,已经上传到百度云基础篇-1AT指令指导基础篇-2烧录和云升级******************************提高篇-1虚拟机安装提高篇-2Linux环境搭建提高篇-3windowsSDK搭建+编译AT指令提高篇-4编译官方标准模板提高篇-5标准模板添加自己代码提高篇-6定时器篇提高篇7-GPIO的控制提高篇8-DHT11提高篇9-PWM(RGB色温灯)提高篇-10任务的创建和使用提高篇-11微秒定时器的使用----------------------友情篇-112-14日最新SDK使用教程----------------------*******************************实战篇-简易服务器之端口转发实战篇-远程控制TCP实战篇-远程控制udp本篇为:实践篇
2025/1/29 1:08:43 750B wifi ESP8266
1
设计一个0~60分钟之内的定时器,定时开始的时候红指示灯亮,结束的时候绿指示亮,可以随意以分钟为单位,在六十分钟的范围内设定定时时间,随着定时的开始,显示器开始显示时间,即依次显示出0,1,2,3,4….直到定时结束,当定时结束的时候进行手动清零。
2025/1/28 6:08:24 351KB 定时器 指示灯显示定时
1
通过定时器1输出两路PWM驱动电机,在主函数中改变占空比
2025/1/26 17:17:38 10.71MB stm32
1
软件功能概述●文件打开器■打开常用的目录■打开常用的文件●程序打开器■打开操作系统常用的程序(包括我的电脑、回收站、记事本、设备管理器、添加删除程序等)■打开自定义常用的程序●系统参数设置■设置系统网络参数■设置系统日期时间■设置文件关联■设置启动命令■设置鼠标右键菜单命令●小工具■闹钟■日历提醒■定时关机■记事本■屏幕抓取●其他功能■支持快捷关机、重启、注销■支持智能命令:一键改系统IP,一键改时间等■支持其他系统命令:控制面板、组件服务等
2025/1/26 15:33:57 22.22MB 桌面工具
1
舵机是一种广泛应用于机器人、无人机和模型制作等领域的微型伺服马达,它能够根据接收到的脉冲宽度调制(PWM)信号精确地改变其旋转角度。
在本项目中,我们将探讨如何使用STM32微控制器对舵机进行控制。
STM32是意法半导体(STMicroelectronics)推出的一款基于ARMCortex-M内核的微控制器系列,以其高性能、低功耗和丰富的外设接口著称。
在基于STM32的舵机控制系统中,主要涉及到以下几个关键知识点:1.**STM32硬件接口**:STM32芯片通常具有多个PWM通道,如TIMx模块,可以产生不同频率和占空比的PWM信号。
我们需要选择一个合适的定时器通道来输出舵机所需的PWM信号。
2.**PWM生成**:STM32的定时器工作在PWM模式下,通过设置预分频器、自动重载值和比较寄存器,可以生成不同频率和占空比的PWM波形。
舵机通常需要的PWM频率在50Hz左右,占空比变化范围为1-2ms,对应舵机的角度范围通常为0°到180°。
3.**软件编程**:使用STM32CubeMX或HAL库初始化定时器和GPIO,配置PWM通道的工作模式。
之后,在主程序中,根据需要改变比较寄存器的值来调整PWM的占空比,从而控制舵机的角度。
4.**舵机驱动**:理解舵机的工作原理,知道如何通过改变PWM信号的占空比来控制舵机的转动。
这涉及到电机控制理论,包括速度和位置的反馈控制。
5.**中断服务函数**:在某些应用中,可能需要实时响应舵机的位置变化,这时可以设置定时器中断,当PWM周期到达时触发中断,更新舵机角度或者处理其他任务。
6.**调试与测试**:使用开发板上的串口或其他通信接口,将舵机的控制信号实时发送到STM32,通过示波器或逻辑分析仪检查PWM信号是否符合预期,同时观察舵机的实际动作是否正确。
7.**电源管理**:考虑到舵机的功率需求,确保STM32和舵机的供电稳定,避免电源波动影响控制精度。
8.**安全机制**:为了防止舵机过度旋转造成损坏,可以设置角度限制或超时保护,当舵机超出预定范围时停止发送PWM信号。
通过以上这些步骤,你可以实现一个基于STM32的简单舵机控制系统。
实际应用中,可能还需要结合传感器数据、算法控制等高级功能,以实现更复杂的运动控制。
对于初学者,理解并掌握这些基本概念和实践技巧,是进入STM32和舵机控制领域的重要一步。
2025/1/25 3:05:29 4.96MB stm32 舵机
1
边学边写的。
有收发定时发时间戳功能。
还包含QTdesigner生成的.ui文件。
画的很丑还有图标文件
2025/1/24 14:16:53 26.49MB python com gui
1
STM32F103系列微控制器是基于ARMCortex-M3内核的高效能、低成本芯片,广泛应用于各种嵌入式系统设计。
本例程集成了多种关键功能,旨在为开发者提供一个强大的开发平台,帮助他们快速实现项目。
以下是各功能模块的详细解释:1.**FreeRTOS操作系统**:FreeRTOS是一款轻量级实时操作系统(RTOS),适用于资源有限的嵌入式设备。
它提供了任务调度、信号量、互斥锁等多任务管理机制,确保了系统的实时性和高效率。
在STM32F103上运行FreeRTOS,可以充分利用其多线程能力,实现复杂的软件架构。
2.**MPU6050DMP**:MPU6050是一款六轴惯性测量单元(IMU),集成了三轴陀螺仪和三轴加速度计。
DMP(数字运动处理器)是其内置的硬件加速器,可以处理传感器数据融合,提供姿态解算。
在本例程中,MPU6050DMP用于获取设备的姿态、角速度和加速度信息,适用于运动控制和导航应用。
3.**USART通信**:通用同步/异步收发传输器(USART)是STM32中的串行通信接口,用于与外部设备进行数据交换。
在项目中,USART可能用于设备配置、数据传输或者与其他MCU通信。
4.**Timer输入捕获**:STM32的定时器支持输入捕获模式,可以精确测量输入信号的脉冲宽度或频率。
在例程中,这可能用于电机控制、测速或距离测量(如通过计算超声波脉冲往返时间)。
5.**KS103测距模块**:KS103通常是指一款超声波测距模块,利用超声波的反射特性来测量物体的距离。
结合Timer输入捕获功能,可以实现精确的距离测量,例如在自动化设备或安全系统中。
6.**烟雾检测**:虽然在描述中提到烟雾检测,但没有提供具体实现的细节。
一般而言,烟雾检测可能通过光电传感器或电化学传感器实现,将检测到的信号转化为电信号并处理,以报警或触发其他响应。
这个综合示例涵盖了嵌入式系统开发中的多个关键部分,包括实时操作系统、传感器数据处理、串行通信以及物理世界的测量。
对于想要在STM32F103平台上进行复杂项目开发的工程师来说,这是一个宝贵的资源,可以减少重复工作,提高开发效率。
通过学习和参考这个例程,开发者能够更好地理解和应用这些技术,解决实际问题。
2025/1/21 16:03:14 10.62MB FREERTOS MPU6050DMP stm32F103 usart
1
verilog微波炉定时器设计
2025/1/21 11:33:49 285KB 微波炉
1
用D/A转换器输出一个正弦波,频率从20Hz~5KHz,采用矩阵式按键,由按键直接四位数指定频率,8052的定时器2定时输出。
文件包含电路图和设计程序,及全部仿真文件可直接运行。
1
共 868 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡