ArcGIS中栅格数据重采样三种方法详细介绍,包括图片,还有在ArcGIS中如何进行栅格数据重采样的过程(有图表示详细的过程)
1
GPS位置+速度两个观测量卡尔曼惯导航融合,观测传感器滞后的主要思想是,由于惯导的主体为加速度计,采样频率与更新实时性要求比较高,而观测传感器(气压计、GPS、超声波、视觉里程计等)更新相对比较慢(或者数据噪声比较大,通常需要低通造成滞后)。
在无人机动态条件下,本次采样的得到的带滞后观测量(高度、水平位置)已经不能反映最新状态量(惯导位置),我们认定传感器在通带内的延时时间具有一致性(或者取有效带宽内的平均时延值),即当前观测量只能反映系统N*dt时刻前的状态,所以状态误差(在这里指的是气压计与惯导高度、GPS水平位置与惯导水平位置)采用当前观测量与当前惯导做差的方式不可取,在APM里面采用的处理方式为:将惯导的估计位置用数组存起来,更具气压计和GPS的滞后程度,选取合适的Buffer区与当前观测传感器得到位置做差得到状态误差。
————————————————版权声明:本文为CSDN博主「NamelessCotrun无名小哥」的原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/u011992534/article/details/78257684
2024/5/6 15:32:31 997KB 卡尔曼 数据融合 GPS
1
对一组地震波信号进行绘制,并利用fft进行频谱分析,比较不同采样频率和不同采样点数对频谱分析结果造成的影响。
2024/5/3 19:45:08 2KB fft分析
1
基于电涡流的金属探测代码,实现方法中涉及数字锁相算法、过采样技术,最终的金属探测器实现了超过2cm距离的金属探测。
2024/5/1 20:34:09 6.81MB 单片机 金属探测 电涡流 数字锁相
1
驱动代码,富莱电子的。
ADS1256采样芯片的驱动代码。
移植可用。
2024/5/1 20:12:36 14KB ADS1256 驱动 stm32f104x
1
在Eb/N0(5db~30db,间隔5db)下的加性高斯白噪声,并且假设信道(AWGN信道、瑞利信道)引入了30度的相位误差,采用QPSK调制信号作为导频信号,试仿真不同情况下的平均相位估计与采样点间曲线。
改变里面参数,并分析其对相位估计的影响。
详见我的博客:高斯信道下信号相位估计
1
A、方法:   连续取N个采样值进行算术平均运算      N值较大时:信号平滑度较高,但灵敏度较低      N值较小时:信号平滑度较低,但灵敏度较高      N值的选取:一般流量,N=12;
压力:N=4B、优点:   适用于对一般具有随机干扰的信号进行滤波   这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:   对于测量速度较慢或要求数据计算速度较快的实时控制不适用   比较浪费RAM
2024/5/1 15:58:52 453KB PLC程序
1
在测试演示程序前请先准备墨镜或深色玻璃或半透明塑料遮挡开发板上灯光,以免对眼睛造成伤害//1.TM0定时器模式,产生0.5秒定时中断//2.TB0时基定时器,产生1秒的时基定时中断//3.PTM0产生PWM波形,占空比从0%升到100%再从100%降到0%产生呼吸灯效果//4.PTM2产生PWM波形,设定一个固定的占空比经过10K电阻+106电容到地做RC滤波,滤波后的模拟电压=DAC_duty/DAC_period*VDD//5.,10次采样值,去掉最大最小值,并求平均得到ADC转换值//6.PTM3将ADC转换值再用PWM输出,可以还原出来与PTM2基本一致的PWM波形.
2024/4/26 22:26:44 69KB HT66F2390代码
1
本工具箱包含了大量的代理模型,包括Kriging及其相关的变形,RBF及其相关的变形,多项式代理模型等,还包括了试验设计、采样技术、大量的测试函数等的MATLAB代码。
本工具箱适用于基于代理模型优化算法研究的研究生及相关研究人员。
2024/4/26 22:32:42 1.88MB 代理模型 测试函数
1
中位值平均滤波法A、方法:   相当于“中位值滤波法”+“算术平均滤波法”   连续采样N个数据,去掉一个最大值和一个最小值   然后计算N-2个数据的算术平均值      N值的选取:3~14B、优点:   融合了两种滤波法的优点   对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:   测量速度较慢,和算术平均滤波法一样   比较浪费RAM
2024/4/26 3:42:01 296KB PLC程序
1
共 483 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡