本文档为2016年本人参加全国大学生数学建模参赛最后提交文档(文档中最后附录包含matlab代码)摘要小区开放是当今热议的缓解小区周边道路交通堵塞的方法之一,本文在一定假设的前提下,通过建合适的评价体系和数学模型,进行计算机仿真,得到定量的数据结论,对比分析不同小区在进行小区开放后,对周边道路的通行影响。
针对问题一,通过文献查找,获取相关的道路通行评价指标,结合小区周边实际情况,运用BP神经网络,得到一套合适的评价体系(道路交通运行指数,道路交通拥堵率,平均行程速度,平均延误时间)。
针对问题二,使用元胞自动机和网格化图,建立与现实情况相符合的静态建筑物道路参数和动态车辆通行模型,并考虑司机是否具有获得前方道路信息的能力,分别建立基于排队论思想和基于道路阻抗系数的路径选择策略模型。
针对问题三,将不同的小区类型进行合理抽象,得到基本典型结构。
结合由问题二得到的模型进行建模仿真,将得到的结果按照问题一得到的评价体系进行评价,并进行可视化和数据分析得到小区开放在一定程度上可以缓解小区周边道路交通压力。
针对问题四,根据问题三得到的结论,通过控制变量法对比各个条件下车流通行的情况,得出有利条件与不利条件。
提出合理的建议,并以简单书信形式表述。
关键词:小区开放、BP神经网络、元胞自动机、动态建模
2025/4/3 7:47:13 835KB 数学建模 matlab 小区开放
1
二维偏微分方程微分求积法matlab代码,仅供参考!!!
1
人口指Malthus数增长模型和Logistic模型,美国人口做例子方便理解,还附带代码
2025/4/1 13:12:58 85KB Malthus 增长模型 Logistic模型
1
稀疏分解;
ksvd算法;
matlab代码
2025/3/31 6:30:54 12KB ksvd算法
1
用于函数逼近的rbf的matlab代码,有结果图和实验报告,可运行
2025/3/30 1:32:25 753KB rbf matlab
1
多阶段伪谱法的基本实现的matlab代码,便于学习和改造成自己的实现。
建立了伪谱法的通用框架,目前包含切比雪夫和勒让德伪谱法,可以很容易加入其它伪谱法,也可以进一步加入分段策略改造成hp自适应伪谱法。
包含一些算例,如速降线,月面着陆。
2025/3/29 17:11:34 83KB 最优控制 伪谱法 航空航天
1
高斯卷积模板(高斯函数)Matlab代码,可实现二维高斯卷积模板的生成功能。
M文件,可用记事本打开。
1
DeepLearningToolbox™提供了一个框架,用于设计和实现具有算法,预训练模型和应用程序的深度神经网络。
您可以使用卷积神经网络(ConvNets,CNN)和长期短期记忆(LSTM)网络对图像,时间序列和文本数据进行分类和回归。
应用程序和图表可帮助您可视化激活,编辑网络体系结构以及监控培训进度。
对于小型训练集,您可以使用预训练的深层网络模型(包括SqueezeNet,Inception-v3,ResNet-101,GoogLeNet和VGG-19)以及从TensorFlow™-Keras和Caffe导入的模型执行传输学习。
了解深度学习工具箱的基础知识深度学习图像从头开始训练卷积神经网络或使用预训练网络快速学习新任务使用时间序列,序列和文本进行深度学习为时间序列分类,回归和预测任务创建和训练网络深度学习调整和可视化绘制培训进度,评估准确性,进行预测,调整培训选项以及可视化网络学习的功能并行和云中的深度学习通过本地或云中的多个GPU扩展深度学习,并以交互方式或批量作业培训多个网络深度学习应用通过计算机视觉,图像处理,自动驾驶,信号和音频扩展深度学习工作流程深度学习导入,导出和自定义导入和导出网络,定义自定义深度学习图层以及自定义数据存储深度学习代码生成生成MATLAB代码或CUDA®和C++代码和部署深学习网络函数逼近和聚类使用浅层神经网络执行回归,分类和聚类时间序列和控制系统基于浅网络的模型非线性动态系统;使用顺序数据进行预测。
2025/3/29 11:02:30 14.06MB deep l matlab 深度学习
1
这是一个在MATLAB上面可以运行的极限学习机算法实例,文件中,包含了多个极限学习机样例,ELM说白了就是另一种神经网络,其作用相似,效果又不同,比如其离散型更强等,建议直接修改接口,方便调试
2025/3/28 16:16:10 1.21MB matlab 极限学习机
1
CT三维重建matlab代码,注意:1.代码中的Gray,如果报错请改成小写gray2.CT切片是患者隐私,这里不提供,请自己找数据源
2025/3/28 14:31:25 238KB 三维重建 ;matlab
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡