很经典很实用目录:第一章连续的小波变换1.1连续小波变换的定义1.2与短时傅里叶变换的比较1.3连续小波变换的一些性质1.4小波变换的反演及对基本小波的要求1.5连续小波变换的计算机实现与快速算法1.6几种常用的基本小波1.7应用举例第二章尺度及位移均离散化的小波变换2.1离散α,γ栅格下的小波变换2.2标架(frame)概念2.3小波标架2.4应用举例第三章多分辨率分析与离散序列的小波变换3.1概述3.2多分辨率信号分解与重建的基本概念3.3尺度函数和小波函数的一些重要性质3.4由多分辨率分析引出多采样率滤波器组3.5Mallat算法实现中的一些问题3.6离散序列的小波变换3.7金字塔结构的数据编码第四章多采样率滤波器组与小波变换4.1概述4.2多采样率信号处理的一些基本关系4.3双通道多采样率滤波器的理想重建条件4.4多采样率滤波器组的两种一般表示法4.5正交镜像滤波器组与共轭正交滤波器组4.6正交滤波器组的设计4.7二项式小波滤波器组4.8对滤波器组参数与连续时间小渡变换关系的进一步讨论4.9Daubechies小波4.10IIR型的正交滤波器组和小波4.1l双正交滤波器组与双正交小波4.12滤波器组理想重建条件的时域表示式及其设计第五章二维小波变换及其用于图像处理5.1概述5.2二维图像的多分辨率分析:可分离情况5.3五株排列(quincunx)的多分辨率分析5.4应用举例5.5二维连续小波变换第六章小波变换用于表征信号的突变(瞬态)特征6.1概述6.2基本原理6.3几种检测局部性能常用的小波6.4.用小波变换极大值在多尺度上的变化来表征信号奇异点的性质6.5用二维小波变换作图像上物体边沿的检测6.6应用举例6.7用小波变换的过零点来表征信号6.8由小波变换的奇异点重建信号6.9仿真计算第七章小波包与时一频平面的铺砌7.1概述7.2小波包的定义与主要性质7.3最优小波包基的选择7.4自适应小波包分解7.5最优小波包作自适应切换时瞬态的抑制——时变滤波器组方法7.6关于时间一频率平面的自适应铺砌7.7基本小波的优化设计7.8小波变换在不同基函数间的换算第八章小波变换与分形信号的分析8.1概述8.2关于分形的简述8.31过程的小波分析8.4确定性的自相似过程8.51过程的信号处理8.6分数布朗运动与分数高斯噪声8.7小波变换用于其他分形问题简介附录1过程或FBM的产生第九章运动物体回波信号的宽带处理9.1概述9.2回波信号的宽带模型9.3针对宽带回波的小波变换处理9.4运动系统特性的多尺度表征结束语参考文献
2025/11/28 5:57:40 14.93MB 小波 工程 杨福生
1
南开大学数字图像处理方面的精品研究!!!附有长达几十页的文档和调试通过的完整程序。
执行exe程序后,自动打开摄像头,手拿目标物体在视野中经过,便可跟踪并识别,借此控制鼠标在屏幕上的移动,达到用手指悬空玩电脑游戏的目的。
作者呕心沥血完成该设计,毕设论文水平。
技术方面,使用了camshift技术进行运动物体的跟踪与识别,使得跟踪非常流畅。
实现方面,基于VC6.0+MFC,使用了OpenCV库。
2025/4/22 22:39:38 1.98MB 运动物体 跟踪 识别 camshift
1
红绿灯识别opencv运动物体识别
2025/3/29 22:50:51 4.19MB opencv 红绿灯识别 运动物体识别
1
运动目标检测在计算机视觉,图像处理,模式识别等多领域有着广泛的应用,经历了多年的研究和探索,针对运动目标检测的算法层出不穷,我们也积累了许多相关的算法。
但是我们还远没有完成对这个充满挑战的领域的探索。
本文对运动目标检测的技术进行了一定的研究,实现了基于canny算子和光流法相结合的运动目标检测方法。
为了能够准确把握这个行业的动态,本文首先介绍了运动目标检测的三大经典方法:背景相减法,帧差法,光流法。
同时比较了各自的优缺点。
帧差法具有易实现,计算量小的优点,但是却无法准确的检测出运动目标的完整轮廓。
光流法具有对不断运动的运动目标进行目标检测,但是它却有很大的计算量,同时对噪声也比较敏感。
为了可以对运动目标进行更好的识别,我们提出了边缘检测算子与光流法相结合的新方法。
在对多种边缘检测算子进行了了解之后,我们确定了利用canny算子进行边缘检测,并且结合光流法进行运动目标检测的方法。
在用canny算子检测出运动物体边缘之后,借助光流法计算出物体的运动场,同时结合最大类间方差法分辨出运动目标和背景,接着将物体的边缘信息和物体的运动信息进行融合,最后运用数学形态学的方法对结果进行处理,得到最终的运动目标。
通过实验,我们发现该方法既克服了帧差法不能准确检测出运动物体轮廓,和光流法抗噪声能力差的缺点,可以准确检测运动目标,对运动目标具有更好的检测效果
2025/3/25 14:37:01 15.94MB 运动目标检测 CANNY算子 光流 matlab
1
随着道路监控系统的日益完善,大量复杂的交通视频加重了交警部门的工作压力,因此建立智能交通监测模型成为路况监控自动化的关键。
本文基于OpenCV开发平台,利用OpenCV的基本函数与运动物体跟踪原型,通过视频处理构建了交通监控模型,对所涉及的运动背景提取、阴影去除运动检测、形态学处理以及碰撞检测等核心技术进行了代码实现。
1
基于Vibe算法的运动物体检测(VisualStudio完整工程及仿真视频)Matlab前景目标提取(四个场景)1)静态背景、动态背景的前景目标提取,能在背景复杂化的条件下,将运动的目标;
2)带抖动视频;
3)静态背景下多摄像头对多目标提取;
4)出现异常事件视频的判断等问题。
给出了在不同情况下的前景目标提取方案。
1
基于opencv+vs2008的视频前景检测,对于视频监控领域是很好的小demo
2024/8/29 18:41:51 1.76MB opencv 前景提取 运动检测 vs2008
1
在基于virtools设计和开发的虚拟漫游系统中,针对人物角色与场景中设定不能被穿越物体之间的碰撞检测情况进行分析并予以解决。
当人物角色在建筑模型内行进时碰撞检测拟采用重力模拟的方法,与外部静止的环境小品发生碰撞时要按物体的大小、形状分别采用单独碰撞检测方法或网格碰撞检测方法,而与运动物体的碰撞检测则需要加入相应的滑动处理方式。
实际应用表明,完成各项功能的行为模块组合简洁高效,系统仿真度高,相关技术的实现也能为其他类似设计提供很好的参考价值。
1
Vibe背景建模的方法检测视频中的运动物体,matlab源代码
2024/6/17 1:53:03 1017KB Vib matla
1
GMM_运动检测_目标跟踪_背景建模基于高斯混合模型的运动物体检测。
有源代码和可执行程序,效果较好。
2024/3/24 6:08:23 8.41MB 运动检测 高斯混合模型 背景建模
1
共 30 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡