MATLAB源码集锦-多元非线性回归代码
2025/9/30 19:19:11 108KB 多元非线性回归 MATLAB
1
SPSS是世界最为优秀的统计工具之一,本书为《SPSS11.0统计分析教程》的高级篇。
由4部分15章及1个附录组成。
主要内容包括:一般线性模型、混合线性模型、多元线性回归与曲线拟合、分类资料的回归分析等。
2025/9/20 4:08:11 17.18MB SPSS 分析教程
1
《基于SPSS的数据分析(第2版)》一书深入浅出地介绍了如何利用SPSS这一强大的统计软件进行数据处理和分析。
薛薇作者在第三版中进一步更新了内容,确保读者能掌握最新的数据分析技术。
这本书是针对那些希望提升数据分析能力,尤其是SPSS操作技能的读者而编写的。
SPSS,全称StatisticalProductandServiceSolutions,是一款广泛应用于社会科学、健康科学、市场研究、教育等领域的统计分析软件。
它的用户界面友好,操作直观,使得非专业统计背景的用户也能轻松上手。
在书中的实例中,我们可以看到各种不同类型的数据文件,如:1.**WebData.mdb**:这可能是一个MicrosoftAccess数据库文件,用于存储网站访问或用户行为数据。
在SPSS中,可以通过ODBC(OpenDatabaseConnectivity)连接导入此类数据,进行网络行为分析,比如用户浏览习惯、点击流分析等。
2.**Telephone.sav**:这是一个SPSS的默认文件格式,包含调查问卷数据。
可能涉及电话调查结果,可以用于分析消费者态度、满意度或者市场趋势。
3.**K-Means.sav**:K-Means是聚类分析的一种,用于将数据集划分为不同的群组或类别。
此文件可能是已经进行了K-Means聚类后的数据,读者可以学习如何解读和解释聚类结果。
4.**BuyOrNot.sav**:这个名字暗示可能涉及购买决策数据,可以用于构建预测模型,比如逻辑回归,以预测顾客是否会购买某个产品。
5.**MBA.sav**:可能包含MBA项目申请人的信息,可以进行特征选择和多元统计分析,以理解哪些因素影响录取决策。
6.**Brand.sav**:品牌相关的数据,可能包括消费者对不同品牌的认知、偏好和忠诚度,适合做品牌影响力和市场份额分析。
7.**ExportApple.sav**:可能与苹果产品的出口数据有关,可以进行国际贸易分析,比如出口量、市场份额、国别分析等。
8.**Sequence.sav**:序列数据,可能用于事件序列分析或时间序列分析,揭示事件之间的顺序关系或时间上的变化模式。
9.**BankBalance.sav**:银行账户余额数据,适合进行财务数据分析,比如客户消费行为、储蓄习惯或信用评估。
10.**聚类分析.str**:Str文件是SPSS的系统文件,可能包含了聚类分析的设置和结果,读者可以学习不同聚类方法的应用和选择。
通过这些实际案例,读者将学习到如何导入不同格式的数据,进行数据清洗、探索性数据分析(EDA)、描述性统计、假设检验、回归分析、聚类分析以及更高级的建模技术。
此外,还会涉及到数据可视化,如图表制作,以及如何解读和报告分析结果。
对于想要提高数据分析技能的人来说,这本书和这些实例文件提供了丰富的实践机会。
2025/9/19 21:37:09 2.52MB SPSS 数据分析
1
MATLAB,可直接替换数据运行。
主成分回归分析PrincipalComponentRegression(PCR)是一种多元回归分析方法,旨在解决自变量间存在多重共线性问题。
2025/8/19 0:12:05 44KB PCA
1
为了有针对性的加快城市化进程,表一中搜集了湖北省部分城市相关指标及数据,现在由你进行决策,该如何进行分类指导城市化水平是衡量一个区域城市化发展程度的重要指标,也是反映一个区域经济社会发展的重要指标.本文通过定性分析,综合考虑城市人口,经济,社会,生活方式等七个方面的内容,建立了衡量区域城市化水平的指标体系;同时运用多元统计方法中的聚类分析,对湖北省7个市的城市化发展水平进行了较为详细地分析和研究,并以此为基础对城市化的发展提出对策和建议,以更好地推动城市化建设的步伐。
城市化是由传统的农业社会向现代社会发展的自然历史过程,是经
1
用功能表达学习目标了解说函数依赖于变量的含义了解如何表达多元函数了解如何表达由另一个功能组成的功能,以及为什么我们以这种方式表达功能介绍数学和代码中的概念趋于一致。
两者都是表达想法并为周围世界建模的机制。
现在是时候开始进行一些切线了,探讨数学中的表示函数与代码中的表示函数如何对齐。
这些概念中的一些可能看起来像是回顾,但是当我们继续探索其他数学主题时,巩固基础将为您提供清晰的信息。
表达功能让我们找到一种通常讨论功能的方法。
我们将函数描述为$f(x)$。
$f(x)$是我们表达函数的通用方法。
我们并不是说输出等于$y$或其他,我们只是说函数返回了输出。
例如,我们可以说以下内容:$$f(x)=3x$$上面的表达式表示输出等于$x$的3倍。
请注意,该输出随输入而变化的数学表达式与以编程方式表示函数随输入如何变化非常吻合。
在编程中,我们可以
2025/8/16 4:41:17 35KB JupyterNotebook
1
文件为采用二进制编码的用遗传算法实现的函数优化,包括1元和多元。
里面有详细的代码解析。
2025/8/14 21:37:38 24KB 函数优化、 MATLAB、 二进制编码、
1
《PLS偏最小二乘法在MATLAB中的实现详解》PLS(PartialLeastSquares,偏最小二乘)是一种统计分析方法,广泛应用于多元数据分析,特别是在化学计量学、机器学习和模式识别等领域。
它通过将原始数据投影到一个新的低维空间中,使因变量与自变量之间的关系得到最大化,并且能有效处理多重共线性问题。
MATLAB作为强大的数值计算和数据可视化工具,是实现PLS的理想平台。
本资料包含两个部分:单因变量的PLS实现和多因变量的PLS实现。
下面将对这两个方面进行详细阐述。
1.单因变量PLS:单因变量的PLS主要针对只有一个响应变量的情况。
在MATLAB中,我们首先需要定义输入变量X和输出变量y,然后构建PLS模型。
关键步骤包括:-数据预处理:对数据进行标准化或归一化,以消除量纲影响。
-计算X和y的相关矩阵,找到最大相关性的方向。
-通过奇异值分解(SVD)分解相关矩阵,得到主成分。
-选择合适的主成分数量,这通常通过交叉验证来确定。
-使用选定的主成分构建PLS回归模型,预测y值。
2.多因变量PLS:对于多因变量情况,PLS的目标是同时考虑多个响应变量。
此时,我们可以使用多响应PLS(MRPLS)或者偏最小二乘判别分析(PLSDA)。
MATLAB中的实现步骤大致相同,但需要处理多个y变量:-同样进行数据预处理。
-计算X与所有y的联合相关矩阵。
-SVD分解该联合相关矩阵,提取主成分。
-对每个y变量分别建立PLS模型,每个模型有自己的权重向量和载荷。
-使用选定的主成分,对每个y变量进行预测。
在MATLAB中,可以利用内置函数如`plsregress`或自定义脚本来实现这些过程。
自定义脚本能够提供更大的灵活性,允许用户调整参数和添加额外的特性,如正则化、特征选择等。
总结,PLS偏最小二乘法在MATLAB中的实现涉及数据预处理、主成分提取、模型构建和验证等多个环节。
通过理解这些步骤,可以有效地应用PLS解决实际问题,无论是单因变量还是多因变量的情况。
提供的MATLAB程序代码文档将为读者提供具体的实现细节和示例,帮助深入理解和掌握PLS算法。
2025/8/9 10:36:08 4KB 偏最小二乘 matlab程序
1
北京大学数学教学系列丛书应用多元统计分析高惠璇多元正态分布 回归分析 判别分析 聚类分析 主成份分析 因子分析
1
实用多元统计分析(第四版),pdf版本作  者:(美)约翰逊(Johnson,R.A.),(美)威克恩(Wichern,D.W.) 著
2025/7/31 12:44:38 19.96MB 实用多元统计分析(第四版)
1
共 203 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡