设计一个请求页式存储管理方案。
并编写模拟程序实现之。
要求包含:1.过随机数产生一个指令序列,共320条指令。
其地址按下述原则生成:①50%的指令是顺序执行的;
②25%的指令是均匀分布在前地址部分;
③25%的指令是均匀分布在后地址部分;
#具体的实施方法是:在[0,319]的指令地址之间随机选区一起点M;顺序执行一条指令,即执行地址为M+1的指令;
在前地址[0,M+1]中随机选取一条指令并执行,该指令的地址为M’;顺序执行一条指令,其地址为M’+1;
在后地址[M’+2,319]中随机选取一条指令并执行;
重复A—E,直到执行320次指令。
2.指令序列变换成页地址流设:(1)页面大小为1K;
用户内存容量为4页到32页;
用户虚存容量为32K。
在用户虚存中,按每K存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为:第0条—第9条指令为第0页(对应虚存地址为[0,9]);
第10条—第19条指令为第1页(对应虚存地址为[10,19]);





















第310条—第319条指令为第31页(对应虚存地址为[310,319]);
按以上方式,用户指令可组成32页。
3.计算并输出下述各种算法在不同内存容量下的命中率。
FIFO先进先出的算法LRU最近最少使用算法OPT最佳淘汰算法
2025/5/25 19:16:15 44KB fifo lru opt
1
EEMD是针对EMD方法的不足,提出了一种噪声辅助数据分析方法。
EEMD分解原理为:当附加的白噪声均匀分布在整个时频空间时,该时频空间就由滤波器组分割成的不同尺度成分组成。
当信号加上均匀分布的白噪声背景时,不同尺度的信号区域将自动映射到与背景白噪声相关的适当尺度上去。
当然,每个独立的测试都可能会产生非常嘈杂的结果,这是因为每个附加噪声的成分都包括了信号和附加的白噪声。
既然在每个独立的测试中噪声是不同的,当使用足够测试的全体均值时,噪声将会被消除。
全体的均值最后将会被认为是真正的结果,随着越来越多的测试,附加的噪声被消除了,唯一持久稳固的部分是信号本身。
2025/4/29 7:26:32 3.18MB MATLAB EEMD
1
作业1:(一)信号(1)用计算机产生两个白噪声信号u1(t)和u2(t),u1(t)服从均匀分布,u2(t)服从高斯分布。
(2)用计算机产生一个随机信号x(t)=a(t)+u(t),其中a(t)为确定性的正弦信号,u(t)为高斯分布的白噪声,u(t)的幅度大于a(t)(二)要求1. 分别计算并画出波形和自相关函数2. 对信号的自相关函数进行讨论与分析3. 用MATLAB工具
2025/2/28 17:45:40 403KB 自相关运算
1
%MATLAB数学建模工具箱%%本工具箱主要包含三部分内容%1.MATLAB常用数学建模工具的中文帮助%2.贡献MATLAB数学建模工具(打*号)%3.中国大学生数学建模竞赛历年试题MATLAB程序%数据拟合%interp1-一元函数插值%spline-样条插值%polyfit-多项式插值或拟合%curvefit-曲线拟合%caspe-各种边界条件的样条插值%casps-样条拟合%interp2-二元函数插值%griddata-不规则数据的二元函数插值%*interp-不单调节点插值%*lagrange-拉格朗日插值法%%方程求根%inv-逆矩阵%roots-多项式的根%fzero-一元函数零点%fsolve-非线性方程组%solve-符号方程解%*newton-牛顿迭代法解非线性方程%%微积分和微分方程%diff-差分%diff-符号导函数%trapz-梯形积分法%quad8-高精度数值积分%int-符号积分%dblquad-矩形域二重积分%ode45-常微分方程%dsolve-符号微分方程%*polyint-多项式积分法%*quadg-高斯积分法%*quad2dg-矩形域高斯二重积分%*dblquad2-非矩形域二重积分%*rk4-常微分方程RungeKutta法%%随机模拟和统计分析%max,min-最大,最小值%sum-求和%mean-均值%std-标准差%sort-排序(升序)%sortrows-按某一列排序(升序)%rand-[0,1]区间均匀分布随机数%randn-标准正态分布随机数%randperm-1...n随机排列%regress-线性回归%classify-统计聚类%*trim-坏数据祛除%*specrnd-给定分布律随机数生成%*randrow-整行随机排列%*randmix-随机置换%*chi2test-分布拟合度卡方检验%%数学规划%lp-线性规划%linprog-线性规划(在MATLAB5.3使用)%fmin-一元函数极值%fminu-多元函数极值拟牛顿法%fmins-多元函数极值单纯形搜索法%constr-非线性规划%fmincon-非线性规划(在MATLAB5.3使用)%%离散优化%*enum-枚举法%*monte-蒙特卡洛法%*lpint-线性整数规划%*L01p_e-0-1整数规划枚举法%*L01p_ie-0-1整数规划隐枚举法%*bnb18-非线性整数规划(在MATLAB5.3使用)%*bnbgui-非线性整数规划图形工具(在MATLAB5.3使用)%*mintreek-最小生成树kruskal算法%*minroute-最短路dijkstra算法%*krusk-最小生成树kruskal算法mex程序%*dijkstra-最短路dijkstra算法mex程序%*dynprog-动态规划%%%图形%plot-平面曲线(一元函数)%plot3-空间曲线%mesh-空间曲面(二元函数)%*meshf-非矩形网格图%*draw-用鼠标划光滑曲线%%中国大学生数学建模竞赛题解%jm96a-捕鱼策略%jm96b-节水洗衣机%jm96bfun-节水洗衣机优化函数%jm97a-零件参数设计%jm97afun-零件参数函数%jm97aoptim-零件参数设计优化函数%jm97b-截断切割%jm97bcount-截断切割枚举法%jm97brule-截断切割优化准则%jm98a1-风险投资模型求解%jm98a2-风险投资模型讨论%jm98a3-收益与风险非线性模型求解%jm98a3fun-收益与风险非线性模型优化函数%jm98b-灾情巡视路线(C程序)%jm99a1-自动化车床模型一%jm99a1fun-自动化车床模型目标函数%jm99a1simu-自动化车床模型随机模拟%jm99asmfun-自动化车床模型费用函数%%演示程序%fun
1
用算法程序集(C语言描述)(第五版)+源代码第1章多项式的计算1.1一维多项式求值1.2一维多项式多组求值1.3二维多项式求值1.4复系数多项式求值1.5多项式相乘1.6复系数多项式相乘1.7多项式相除1.8复系数多项式相除第2章复数运算2.1复数乘法2.2负数除法2.3复数乘幂2.4复数的n次方根2.5复数指数2.6复数对数2.7复数正弦2.8复数余弦第3章随机数的产生3.1产生0到1之间均匀分布的一个随机数3.2产生0到1之间均匀分布的随机数序列3.3产生任意区间内均匀分布的一个随机整数3.4产生任意区间内均匀分布的随机整数序列3.5产生任意均值与方差的正态分布的一个随机数3.6产生任意均值与方差的正态分布的随机数序列第4章矩阵运算4.1实矩阵相乘4.2复矩阵相乘4.3一般实矩阵求逆4.4一般复矩阵求逆4.5对称正定矩阵的求逆4.6托伯利兹矩阵求逆的特兰持方法4.7求一般行列式的值4.8求矩阵的值4.9对称正定矩阵的乔里斯基分解与列式求值4.10矩阵的三角分解4.11一般实矩阵的QR分解4.12一般实矩阵的奇异值分解4.13求广义逆的奇异值分解法第5章矩阵特征值与特征向量的计算5.1约化对称矩阵为对称三对角阵的豪斯荷尔德变换法5.2求对称三对角阵的全部特征值与特征向量5.3约化一般实矩阵为赫申伯格矩阵的初等相似变换法5.4求赫身伯格矩阵全部特征的QR方法5.5求实对称矩阵特征值与特征向量的雅可比法5.6求实对称矩阵特征值与特征向量的雅可比过关法第6章线性代数方程组的求解6.1求解实系数方程组的全选主元高斯消去法6.2求解实系数方程组的全选主元高斯-约当消去法6.3求解复系数方程组的全选主元高斯消去法6.4求解复系数方程组的全选主元高斯-约当消去法6.5求解三对角线方程组的追赶法6.6求解一般带型方程组6.7求解对称方程组的分解法6.8求解对称正定方程组的平方根法6.9求解大型系数方程组6.10求解托伯利兹方程组的列文逊方法6.11高斯-塞德尔失代法6.12求解对称正定方程组的共岿梯度法6.13求解线性最小二乘文体的豪斯伯尔德变换法6.14求解线性最小二乘问题的广义逆法6.15求解病态方程组第7章非线性方程与方程组的求解7.1求非线性方程一个实根的对分法7.2求非线性方程一个实根的牛顿法7.3求非线性方程一个实根的埃特金矢代法7.4求非线性方程一个实根的连分法7.5求实系数代数方程全部的QR方法7.6求实系数方程全部的牛顿下山法7.7求复系数方程的全部根牛顿下山法7.8求非线性方程组一组实根的梯度法7.9求非线性方程组一组实根的拟牛顿法7.10求非线性方程组最小二乘解的广义逆法7.11求非线性方程一个实根的蒙特卡洛法7.12求实函数或复函数方程一个复根的蒙特卡洛法7.13求非线性方程组一组实根的蒙特卡洛法第8章插值与逼近8.1一元全区间插值8.2一元三点插值8.3连分式插值8.4埃尔米特插值8.5特金逐步插值8.6光滑插值8.7第一种边界条件的三次样条函数插值8.8第二种边界条件的三次样条函数插值8.9第三种边界条件的三次样条函数插值8.10二元三点插值8.11二元全区间插值8.12最小二乘曲线拟合8.13切比雪夫曲线拟合8.14最佳一致逼近的里米兹方法8.15矩形域的最小二乘曲线拟合第9章数值积分9.1变补长梯形求积法9.2变步长辛卜生求积法9.3自适应梯形求积法9.4龙贝格求积法9.5计算一维积分的连分式法9.6高振荡函数求积法9.7勒让德-高斯求积法9.8拉盖尔-高斯求积法9.9埃尔米特-高斯求积法9.10切比雪夫求积法9.11计算一维积分的蒙特卡洛法9.12变步长辛卜生二重积分方法9.13计算多重积分的高斯方法9.14计算二重积分的连分方式9.15计算多重积分的蒙特卡洛法第10章常微分方程组的求解10.1全区间积分的定步长欧拉方法10.2积分一步的变步长欧拉方法10.3全区间积分维梯方法10.4全区间积分的定步长龙格-库塔方法10.5积分一步的变步长龙格-库塔方法10.6积分一步的变步长基尔方法10.7全区间积分的变步长默森方法10.8积分一步的连分方式10.9全区间积分的双边法10.10全区间积分的阿当姆斯预报校正法10.11全区间积分的哈
2025/1/9 6:30:24 156.11MB 常用算法程序集 C语言 C++ 第五版
1
求解线性⽅方程组Ax=b,其中A为nxn维的已知矩阵,b为n维的已知向量,x为n维的未知向量。
(1)Jacobi迭代法。
(2)Gauss-Seidel迭代法。
(3)逐次超松弛迭代法。
(4)共轭梯度法。
A为对称正定矩阵,其特征值服从独⽴同分布的[0,1]间的均匀分布;b中的元素服从独立同分布的正态分布。
令n=10、50、100、200,分别绘制出算法的收敛曲线,横坐标为迭代步数,纵坐标为相对误差。
比较Jacobi迭代法、Gauss-Seidel迭代法、逐次超松弛迭代法、共轭梯度法与高斯消去法、列主元消去法的计算时间。
改变逐次超松弛迭代法的松弛因⼦,分析其对收敛速度的影响。
2025/1/6 4:34:36 4KB 数值分析 MATLAB 迭代法
1
实验七白化滤波器的设计⒈ 实验目的了解白化滤波器的用途,掌握白化滤波器的设计方法。
⒉ 实验原理在统计信号处理中,往往会遇到等待处理的随机信号是非白色的,例如云雨、海浪、地物反射的杂乱回波等,它们的功率谱即使在信号通带内也非均匀分布。
这样会给问题的解决带来困难。
克服这一困难的措施之一是对色噪声进行白化处理通信类大二随机信号处理
2024/12/1 11:54:17 391KB 数字滤波器 白噪声
1
利用伪随机数理论生成均匀分布的高斯白噪声,并绘制出白噪声的时域图,本程序在VC6.0中调试通过
2024/11/15 19:49:53 1.99MB 伪随机数理论 高斯白噪声
1
对直方图进行均衡化处理的源代码:把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。
把给定图像的直方图分布改变成“均匀”分布直方图分布。
2024/11/5 11:40:05 152KB 直方图均衡化 图像处理 Matlab 源代码
1
该软件是基于最小区域圆法计算的。
是免费软件。
是Dos版,要求输入的数据格式是每点按极坐标输入,各点要均匀分布在圆周上。
2024/10/3 4:09:58 79KB 机械电子
1
共 34 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡