人脸识别是一个非常困难的模式识别问题,具有非常广阔的应用前景。
一个人脸识别系统包括预处理、特征提取和分类器设计三个部分,对输入的人脸图像进行预处理是人脸识别过程中的一个重要步骤。
人脸图像由于在生成、传输或变换过程中会受到各种因素的干扰和影响,从而产生噪声。
为了保证提取的特征对人脸在图像中的大小、位置和偏斜具有不变性,以及对光照条件具有不敏感性,故特别需要对人脸图像进行预处理。
包括人脸识别技术分析研究及各种算法
2024/11/29 13:31:11 3.23MB 人脸识别
1
数字图像处理是研究如何通过计算机技术处理和分析图像的学科,主要应用于图像增强、恢复、分割、特征提取和识别等任务。
数字图像处理的第三版由RafaelC.Gonzalez和RichardE.Woods编写,二人来自田纳西大学和MedDataInteractive公司。
这本书对数字图像处理领域进行了全面的介绍,涵盖了数字图像处理的历史背景、基本概念、技术和算法。
冈萨雷斯的这本书被认为是该领域的重要参考资料。
数字图像处理可以应用于医疗成像、遥感、安全监控、图像压缩、机器视觉等多个领域。
例如,在医疗成像中,数字图像处理可以帮助医生更清晰地观察患者身体组织的结构,从而提高诊断的准确性;
在遥感领域,通过处理和分析遥感图像可以获取地球表面的信息,用于天气预报、地理信息系统的建立等。
数字图像处理涉及的算法和工具主要包括图像的采集、处理、分析和理解等步骤。
图像采集是使用摄像头、扫描仪等设备将图像转换为计算机可以处理的数据形式;
图像处理通常包括图像的预处理(如去噪、对比度增强)、图像变换(如傅里叶变换、小波变换)和图像恢复等;
图像分析主要涉及到图像分割、特征提取、模式识别等内容;
图像理解则试图使计算机能够解释图像内容,达到类似于人类理解图像的水平。
数字图像处理的起源可以追溯到20世纪50年代末60年代初,当时人们开始使用计算机技术对图像进行处理。
早期的数字图像处理主要用于空间探索、卫星图像处理等领域,随着计算机技术的发展和图像处理理论的完善,数字图像处理逐渐扩展到生物医学、工业、安全等其他领域。
数字图像处理的一个重要分支是数字视频处理,其关注如何处理连续的图像序列,以实现视频压缩、视频增强、运动分析等功能。
视频处理技术在高清电视、网络视频、电影后期制作等行业有着广泛的应用。
数字图像处理是一个不断发展的领域,随着人工智能技术的发展,基于深度学习的图像处理技术成为当前的研究热点。
深度学习模型,尤其是卷积神经网络(CNN)在图像识别、分类、目标检测和图像分割等方面显示出了巨大的潜力。
总结来说,数字图像处理是通过计算机技术来处理图像数据,使之更适合人眼或机器分析的一门技术。
随着技术的进步和应用的拓展,它在多个行业中发挥着越来越重要的作用。
冈萨雷斯的《数字图像处理》作为该领域的经典教材,为学习和研究这一领域的专业人士提供了宝贵的资源和参考。
2024/11/18 17:16:43 19.14MB digital image processing
1
基于实景图像的道路限速标志检测算法研究,算法主要集中于图像的预处理,检测部分。
2024/9/4 13:54:56 1.04MB 图像处理
1
基于BP神经网络的车牌识别技术,包涵了车牌图像的预处理,数字形态学的车牌定位,车牌字符分割,车牌识别等。
2024/6/22 2:55:49 3.14MB 车牌识别 BP神经网络
1
1、对火车摄像头的获得的图像进行预处理其中,滤波用高斯滤波,图像增强包括直方图均衡化和增强对比度,边缘检测用canny算子。
2、检测静态障碍物(只需要检测铁轨内侧以及铁轨上的障碍物):(1)提取铁轨的框架(2)设置检测窗(3)障碍物检测,通过判断图像的八维纹理特征。
2024/4/13 13:50:48 45.62MB C++OPENCV canny算子 图像处理
1
以matlab为平台进行图像处理,预处理银行卡卡号后进行卡号定位,并自动切割出卡号部分的图像。
代码注释明确,适合小白阅读。
2024/3/10 22:43:20 3KB 图像定位分割
1
这是我自己写的对图像进行预处理的matlab源程序,主要是对图像进行光照补偿、旋转与尺度归一化。
上传上来和大家一起学习、分享。
2023/12/8 9:34:26 2KB 预处理 人脸图像
1
Graph-Cut算法是图像及视频中经典且有效的前景和背景分离算法,针对其计算量较大导致实时性不佳、前景和背景颜色相似时分割结果易出现shrinkingbias现象的问题,提出一种改进算法.该算法利用Mean-Shift技术对图像进行预处理,将原图像表示成基于区域的、而不是基于像素的图结构,预处理结果还可应用于后续的前景和背景颜色分布估计过程,使得计算量大大下降;在能量函数中引入了具有自适应权值调节功能的连通性约束项,有效地改善了shrinkingbias现象,提高了分割结果的精确性.实验结果表明,文中算法具有良好的实时交互性,且分割效果更加稳定和精确.
1
文运用相机标定模型确定了相机像平面的像坐标,利用本质矩阵标定双目相机,快速找出了相机的相对位置关系;
利用MATAB软件和图像处理进行编程求解;
通过对图像的预处理和灰度质心法对模型进行了验证,得出模型的精度。
针对问题一,根据数码相机的特点,提出了一个新的标定方法,建立相机标定模型,确定了靶标上圆的圆心在该相机像平面的像坐标,为问题二的计算提供了一个好的算法。
针对问题二,我们利用问题一建立的模型和方法运用MATLAB编程精确的计算了靶标上五个圆的圆心在像平面上的像坐标。
针对问题三,我们引入了灰度质心法及像差模型对前述问题的模型的稳定性和坐标值精度进行检验后,发现两种模型的中心坐标值的误差值在[0~3]个像素区间内,说明前述模型的计算结果的精度很高,通过像差模型得出其径向畸变系数趋于无穷小,认为前述模型有很好的稳定性。
针对问题四,我们提出了一种改进的的立体摄像机标定方法,通过双目匹配点,线性地求解本质矩阵,快速找出摄像机的相对位置关系。
2023/11/8 11:28:51 463KB 双目定位 系统定标 灰度质心法
1
此代码中m文件内容为对细胞的图像分割,包括对图像前期预处理,分割出细胞核,并在后期对细胞进行计数,对黏连的细胞有一定的分割功能,对于图像处理相关初学者有一定帮助
2023/11/6 11:04:39 1KB matlab
1
共 23 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡