Hadoop是大数据领域最流行的技术,但并非唯一。
还有很多其他技术可用于解决大数据问题。
除了ApacheHadoop外,另外9个大数据技术也是必须要了解的。
1.ApacheFlink2.ApacheSamza3.GoogleCloudDataFlow4.StreamSets5.TensorFlow6.ApacheNiFi7.Druid8.LinkedInWhereHows9.MicrosoftCognitiveServices:是一个高效、分布式、基于Java实现的通用大数据分析引擎,它具有分布式MapReduce一类平台的高效性、灵活性和扩展性以及并行数据库查询优化方案,它支持批量和基于流的
1
基于CentOS7的Kubernetes安装全过程(含附件)目录如下:第一部分:NginxonKubernetes应用部署 3一、环境准备 31.1软硬件环境 31.2网络拓扑 4二、Kubenetes及相关组件部署 62.1Docker容器及私有仓库部署 62.2KubernetesMaster部署 72.3KubernetesMinion部署 92.4KubernetesUI部署与验证 11三、NginxonKubernetes部署 133.1Nginx部署与验证 13Kubernetes(简称K8s)具有完备的集群管理能力,它是当前被业界广泛认可和看好的Docker分布式系统解决方案,能够实现自动化资源管理、无缝动态扩容以及跨多个数据中心的资源利用率最大化。
2025/7/5 11:45:53 659KB Kubernetes
1
git,Java项目管理工具,可进行分布式开发,方便简洁,清晰明了
2025/7/4 22:36:53 31.42MB git
1
《空间数据库课程设计》是《空间数据库》课程的实践环节,通过本课程设计的学习,学生应该掌握空间数据库的基本理论及应用技术,熟练掌握ArcSDEGeodatabse空间数据库设计、创建、版本及事务管理、分布式空间数据管理、大型空间数据库管理等技术。
2025/7/2 14:03:11 7.35MB 空间数据库 课程设计
1
飞秒激光的低热输入、极小热影响区的特点使其在微纳米尺度材料连接领域有明显的优势。
为了将石英玻璃与硅可靠地连接在一起,使用功率为4~30mW,频率为1kHz,波长为800nm的飞秒激光对石英玻璃与硅进行连接,测试了接头的剪切强度,对接头横截面进行腐蚀处理,观察截面,分析了接头断裂前后的形貌特征,研究了激光参数,如激光功率、扫描速度、聚焦物镜的数值孔径以及离焦量对接头强度的影响规律。
实验结果表明,根据焊接工艺的不同,接头强度分布在7~54MPa之间。
将激光准确定位到界面处,在合适的激光功率和扫描速度下可以降低焊缝缺陷,得到剪切强度较高的接头。
2025/7/2 13:17:45 3.03MB 激光技术 微连接 飞秒激光 石英玻璃
1
该书共分为6章,分别为基础概率论、进阶概率论、概率分布、统计推断:频率学派、统计推断:贝叶斯学派和回归分析,每章分为三个小节。
,这本书充分利用了数据可视化技术,交互性和趣味性都非常强,可以边读边玩。
教学网站https://seeing-theory.brown.edu/cn.html#firstPage
2025/7/2 13:06:20 319KB 统计 概率论 可视化 人工智能
1
基于广义的惠更斯-菲涅耳原理得到的部分相干电磁涡旋光束经光阑透镜聚焦后的传输方程,研究了聚焦场几何焦平面附近的光强分布和相干度分布。
结果表明,部分相干电磁涡旋光束的拓扑荷数、截断参数、归一化相干长度均会影响聚焦场的涡旋暗区域的大小和相干度分布,可以通过选择合适的参数值获得所需的涡旋暗区:涡旋暗区域的大小随着拓扑荷数和归一化相干长度的增大而增大,其涡旋亮环的最大强度的位置随着归一化相干长度和截断参数的减小而向光阑处移动。
此外,聚焦场的有效相干长度随着归一化相干长度和拓扑荷数的增加而减小;并且随着传输距离的增大,有效相干长度越大。
2025/7/2 0:24:16 1.26MB 物理光学 部分相干 涡旋 聚焦
1
rocketMq解决分布式事务,利用消息中间件解决分布式事务问题
1
用matlab实现huffman编码。
输入为一维行矩阵p,p为各符号的概率分布,概率和为1,各元素值为正,输出H矩阵为对应每个符号概率的码字,L为输出码字的平均码长。
Huffman.m运用典型的IF和FOR控制流循环语句,该程序包括两个IF控制流和5个FOR循环结构。
2025/6/30 1:21:21 918B huffman matlab
1
MATLAB使用ZMNL零记忆非线性方法产生高斯型韦布尔分布
2025/6/29 16:24:05 364KB 雷达 杂波 MATLAB 零记忆非线性
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡