基本思想:首先任意选取K个聚类中心,按最小距离原则将各模式分配到K类的某一类;
不断计算聚类中心和调整各模式的类别,最终使各模式到其判属类别中心的距离平方之和最小。
2025/6/15 20:26:02 2KB k均值 聚类分析 二维
1
简介:
标题中的“图像质量评价指标(全)”是指在图像处理领域中用于衡量图像质量的一系列量化标准。
这些标准可以帮助我们评估图像在经过压缩、传输、修复等操作后,其视觉效果与原始图像的相似程度。
图像质量评价对于图像处理算法的优化、图像压缩技术的选择以及视觉体验的研究都有着重要的作用。
描述中提到的“可结合blog”,可能是指提供了一些博客文章,这些文章可能深入浅出地解释了图像质量评价的原理和应用。
通常,博客会以易于理解的方式介绍复杂的理论概念,并可能包含实践案例或代码示例。
在压缩包内的文件中,我们可以看到以下几类资源:1. **图像清晰度评价函数说明.doc**:这可能是一个文档,详细介绍了用于评估图像清晰度的各种函数,如PSNR(峰值信噪比)、SSIM(结构相似性指数)等。
这些函数是衡量图像质量的重要工具,它们通过计算图像间的差异来量化质量损失。
2. **labA.jpg、labB.jpg、c.jpg、b.jpg、a.jpg**:这些都是图像文件,可能是用于示例或测试不同图像质量评价方法的原始图像和处理后的图像。
例如,可能会比较不同处理后的图像与原始图像的质量差异。
3. **result_lab.jpg**:这个名字暗示了这可能是某种实验结果的图像,可能展示了不同的图像处理技术或质量评价指标的应用效果。
4. **ssim.m**、**Qabf.m**、**mi.m**:这些都是MATLAB脚本文件,很可能是实现图像质量评价算法的代码。
SSIM脚本对应于SSIM算法的实现,这是一个常用的结构相似性指标;
Qabf可能是基于颜色和空间信息的图像质量评价函数;
而mi.m可能涉及互信息(Mutual Information)的计算,互信息常用于评估图像的相似性和信息保留程度。
这个压缩包提供的资源全面涵盖了图像质量评价的概念、方法和实际应用。
用户可以通过阅读文档了解理论知识,查看图像实例以直观感受,同时利用MATLAB代码进行实践操作,进一步理解和应用这些评价指标。
这对于学习和研究图像处理、图像分析或相关领域的人员来说是一份宝贵的资料。
2025/6/15 20:02:11 797KB
1
简介:
1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
5.作者介绍:某大厂资深算法工程师,从事Matlab算法仿真工作10年;
擅长智能优化算法、神经网络预测、信号处理、元胞自动机等多种领域的算法仿真实验,更多仿真源码、数据集定制私信+。
替换数据可以直接使用,注释清楚,适合新手
2025/6/15 19:56:22 301KB
1
简介:
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。
3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
2025/6/15 19:54:46 986KB
1
简介:
Simulink联合单片机开发代码生成1.支持飞思卡尔16位 32位2.Simulink模块化编程3. 带有Bootloader底层,支持CAN上位机刷写4.matlab Simulink基础m语言,Sfunction等基础资料5.模块化编程案例
2025/6/15 19:53:12 32KB
1
简介:
可以广泛的应用于数据预测及数据分析,预报误差法参数辨识-松弛的思想,使用混沌与分形分析的例程,部分实现了追踪测速迭代松弛算法,独立成分分析算法降低原始数据噪声,本科毕设要求参见标准测试模型,通过matlab代码,基于互功率谱的时延估计。
2025/6/15 19:49:45 7KB
1
cnn神经网络matlab'代码可运行
2025/6/15 18:12:04 48KB cnn 神经网络 matlab
1
简要的matlab基于svm分类的小程序,有三个例子可以作为参考
2025/6/15 18:34:11 1.93MB matlab svm
1
本书从工程应用的角度论述小波分析的基本理论与算法,跟踪小波应用的发展前沿,详细介绍了小波变换的理论、MATLAB实现方法和有代表性的工程应用。
2025/6/15 6:47:41 15.39MB 小波分析 mat
1
内含训练样本,分类数据和一整套matlab代码,可直接运行,作者是参考Spectral-SpatialHyperspectralImageClassificationUsingSuperpixelandExtremeLearningMachines文章自行编写的,效果良好。
2025/6/15 0:35:45 34.83MB 超像素、ELM
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡