首页 人工智能 机器学习     /    聚类算法及评价可视化工具箱

聚类算法及评价可视化工具箱

上传者: buaasuozi | 上传时间:2024/12/18 5:11:11 | 文件大小:2.01MB | 文件类型:zip
聚类算法及评价可视化工具箱
2005年由匈牙利DepartmentofProcessEngineeringUniversityofVeszprem的BalazsBalasko,JanosAbonyiandBalazsFeil编写的模糊聚类及数据分析工具箱。
代码很全面,包括文档说明。
包括聚类算法KmeansKmedoidsFCMGKGG,聚类评价方法,聚类降维可视化方法。
其中,说明文档我做了书签,便于大家阅读。
PS:本来没打算索要资源分,因为是人家开源发布的东西。
但是,上传资源的时候点选了资源分,就没有0分的选项,最后只能选择这个最低1分了。
如果没有帐号或者资源分不够,可以联系我,我分享给你们。
或者去找原资源网站,或者去可以不收取资源分的地方下载吧!大家共同学习进步!QQ:379786867(亦可微信) 本软件ID:9941747

文件下载

资源详情

[{"title":"(48个子文件2.01MB)聚类算法及评价可视化工具箱","children":[{"title":"Demos","children":[{"title":"projection","children":[{"title":"WINEDAT.TXT <span style='color:#111;'>39.14KB</span>","children":null,"spread":false},{"title":"visual_call.m <span style='color:#111;'>4.02KB</span>","children":null,"spread":false},{"title":"wisconsin.wk1 <span style='color:#111;'>86.86KB</span>","children":null,"spread":false},{"title":"IRIS.MAT <span style='color:#111;'>8.38KB</span>","children":null,"spread":false}],"spread":true},{"title":"PCAexample","children":[{"title":"nDexample.m <span style='color:#111;'>379B</span>","children":null,"spread":false},{"title":"PCAexample.m <span style='color:#111;'>483B</span>","children":null,"spread":false}],"spread":true},{"title":"clusteringexamples","children":[{"title":"motorcycle","children":[{"title":"GKcall.m <span style='color:#111;'>543B</span>","children":null,"spread":false},{"title":"Kmeanscall.m <span style='color:#111;'>408B</span>","children":null,"spread":false},{"title":"FCMcall.m <span style='color:#111;'>542B</span>","children":null,"spread":false},{"title":"GGcall.m <span style='color:#111;'>698B</span>","children":null,"spread":false},{"title":"Kmedoidcall.m <span style='color:#111;'>409B</span>","children":null,"spread":false},{"title":"MotorCycle.txt <span style='color:#111;'>7.90KB</span>","children":null,"spread":false}],"spread":true},{"title":"synthetic","children":[{"title":"GKcall.m <span style='color:#111;'>498B</span>","children":null,"spread":false},{"title":"Kmeanscall.m <span style='color:#111;'>536B</span>","children":null,"spread":false},{"title":"FCMcall.m <span style='color:#111;'>499B</span>","children":null,"spread":false},{"title":"GGcall.m <span style='color:#111;'>598B</span>","children":null,"spread":false},{"title":"Kmedoidcall.m <span style='color:#111;'>508B</span>","children":null,"spread":false},{"title":"nDexample.m <span style='color:#111;'>381B</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"comparing","children":[{"title":"GKcall.m <span style='color:#111;'>676B</span>","children":null,"spread":false},{"title":"Kmeanscall.m <span style='color:#111;'>421B</span>","children":null,"spread":false},{"title":"FCMcall.m <span style='color:#111;'>637B</span>","children":null,"spread":false},{"title":"GGcall.m <span style='color:#111;'>716B</span>","children":null,"spread":false},{"title":"Kmedoidcall.m <span style='color:#111;'>422B</span>","children":null,"spread":false},{"title":"nDexample.m <span style='color:#111;'>336B</span>","children":null,"spread":false},{"title":"modvalidity.m <span style='color:#111;'>3.43KB</span>","children":null,"spread":false}],"spread":true},{"title":"optnumber","children":[{"title":"optnumber.m <span style='color:#111;'>1.57KB</span>","children":null,"spread":false},{"title":"MotorCycle.txt <span style='color:#111;'>7.90KB</span>","children":null,"spread":false},{"title":"modvalidity.m <span style='color:#111;'>3.43KB</span>","children":null,"spread":false}],"spread":true},{"title":"normexample","children":[{"title":"normexample.m <span style='color:#111;'>373B</span>","children":null,"spread":false},{"title":"data3.txt <span style='color:#111;'>5.57KB</span>","children":null,"spread":false}],"spread":true},{"title":"clustevalexample","children":[{"title":"data2.txt <span style='color:#111;'>2.88KB</span>","children":null,"spread":false},{"title":"evalexample.m <span style='color:#111;'>539B</span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"FUZZCLUST","children":[{"title":"clust_normalize.m <span style='color:#111;'>705B</span>","children":null,"spread":false},{"title":"SAMMON.M <span style='color:#111;'>4.40KB</span>","children":null,"spread":false},{"title":"Kmeans.m <span style='color:#111;'>1.91KB</span>","children":null,"spread":false},{"title":"FCMclust.m <span style='color:#111;'>1.45KB</span>","children":null,"spread":false},{"title":"GKclust.m <span style='color:#111;'>3.04KB</span>","children":null,"spread":false},{"title":"PCA.m <span style='color:#111;'>1.32KB</span>","children":null,"spread":false},{"title":"Kmedoid.m <span style='color:#111;'>2.25KB</span>","children":null,"spread":false},{"title":"GGclust.m <span style='color:#111;'>2.49KB</span>","children":null,"spread":false},{"title":"PROJEVAL.M <span style='color:#111;'>1.15KB</span>","children":null,"spread":false},{"title":"SAMSTR.M <span style='color:#111;'>610B</span>","children":null,"spread":false},{"title":"validity.m <span style='color:#111;'>4.00KB</span>","children":null,"spread":false},{"title":"clust_denormalize.m <span style='color:#111;'>710B</span>","children":null,"spread":false},{"title":"clusteval.m <span style='color:#111;'>3.10KB</span>","children":null,"spread":false},{"title":"FuzSam.m <span style='color:#111;'>2.38KB</span>","children":null,"spread":false},{"title":"nDexample.m <span style='color:#111;'>379B</span>","children":null,"spread":false}],"spread":false},{"title":"FuzzyClusteringToolbox_withBookMark.pdf <span style='color:#111;'>2.00MB</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明