第6章解决“实用C编程”第6章中的练习练习6-1:编写一个程序来查找两个之间的距离的平方点。
(对于更高级的问题,请找到实际距离。
此问题涉及使用标准功能sqrt。
请使用您的帮助系统来查找有关如何使用此功能的更多信息。
)#include#include<math.h>intmain(){ floatx1,y1,x2,y2,gdistance; printf("Inputx1:"); scanf("%f",&x1); printf("Inputy1:"); scanf("%f",&y1);printf("Inputx2:"); scanf("%f",&x2); printf("Inputy2:");
2025/4/3 11:14:32 1KB
1
LINGO是用来求解线性和非线性优化问题的简易工具。
LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。
§1LINGO快速入门当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGOModel–LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1如何在LINGO中求解如下的LP问题:在模型窗口中输入如下代码:min=2*x1+3*x2;x1+x2>=350;x1>=100;2*x1+x2<=600;然后点击工具条上的按钮即可。
例1.2使用LINGO软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如下表。
单位销地运价产地 B1 B2 B3 B4 B5 B6 B7 B8 产量A1 6 2 6 7 4 2 5 9 60A2 4 9 5 3 8 5 8 2 55A3 5 2 1 9 7 4 3 3 51A4 7 6 7 3 9 2 7 1 43A5 2 3 9 5 7 2 6 5 41A6 5 5 2 2 8 1 4 3 52销量 35 37 22 32 41 32 43 38 使用LINGO软件,编制程序如下:model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/:capacity;vendors/v1..v8/:demand;links(warehouses,vendors):cost,volume;endsets!目标函数;min=@sum(links:cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I):volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J):volume(I,J))<=capacity(I));!这里是数据;data:capacity=605551434152;demand=3537223241324338;cost=626742954953858252197433767392712395726555228143;enddataend然后点击工具条上的按钮即可。
为了能够使用LINGO的强大功能,接着第二节的学习吧。
§2LINGO中的集对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通工具和雇工等等。
LINGO允许把这些相联系的对象聚合成集(sets)。
一旦把对象聚合成集,就可以利用集来最大限度的发挥LINGO建模语言的优势。
现在我们将深入介绍如何创建集,并用数据初始化集的属性。
学完本节后,你对基于建模技术的集如何引入模型会有一个基本的理解。
2.1为什么使用集集是LINGO建模语言的基础,是程序设计最强有力的基本构件。
借助于集,能够用一个单一的、长的、简明的复合公式表示一系列相似的约束,从而可以快速方便地表达规模较大的模型。
2.2什么是集集是一群相联系的对象,这些对象也称为集的成员。
一个集可能是一系列产品、卡车或雇员。
每个集成员可能有一个或多个与之有关联的特征,我们把这些特征称为属性。
属性值可以预先给定,也可以是未知的,有待于LINGO求解。
例如,产品集中的每个产品可以有一个价格属性;
卡车集中的每辆卡车可以有一个牵引力属性;
雇员集中的每位雇员可以有一个薪水属性,也可以有一个生日属性等等。
LINGO有两种类型的集:原始集(primitive set)和派生集(derivedset)。
一个原始集是由一些最基本的对象组成的。
一个派生集是用一个或多个其它集来定义的,也就是说,它的成员来自于其它已存在的集。
2.3模型的集部分集部分是LINGO模型的一个可选部分。
在LINGO模型中使用集之前,必须在集部分事先定义。
集部分以关键字“sets:”开始,以“endsets”结束。
一个模型可以没有集部分,或有一个简单的集部分,或有多个集部分。
一个集部分可以放置于模型的任何地方,但是一个集及其属性
1
题目在下面,通过SPSS做的回归分析小论文,原理操作都很详细。
一:某公司在各地区销售一种特殊的化妆品。
该公司观测了15个城市在某季度内对该化妆品的销售量Y及各地区适合使用该化妆品的人数X1和人均收入X2,得到数据如表所示。
假设误差服从正态分布N(0,)试建立Y与X1,X2之间的线性回归方程并研究相应的统计推断问题(数据略)。
内容要求包括:(1)数据描述性分析,自变量与因变量线性关系预判断;
(2)回归分析,模型检验,系数检验;
(3)多重共线性检验,DW检验;
(4)残差分析。
二:下面是我国1990到2013年的一些经济数据,请做回归分析(数据略)。
2025/4/1 5:04:53 259KB data analysis
1
不再维护此项目。
考虑推迟到。
ReactReact对hapi的这是一个在服务器上渲染React组件的hapi视图引擎。
它呈现静态标记,并且不支持将这些视图安装在客户端上。
它旨在替代现有的服务器端视图解决方案,例如jade,ejs或handlebars。
安装npmi-Shapi-reactreactreact-dom注意:您必须显式安装react作为依赖项。
在这里,React是一个对等依赖性。
这是为了避免使用不兼容版本时可能出现的问题。
支持React0.11.x1.xx版本保留用于React0.11.x版本。
2.xx及更高版本将支持React0.12.x及更高版本。
用法将其添加到您的应用server=newhapi.Server(0);varengine=require('hapi-react')(
2025/3/14 22:53:58 9KB JavaScript
1
(1)提高测量频率范围,如10Hz~100KHz或更高、更低频率,提高频率的测量绝对值误差,如达到±1Hz。
(2)可以设置量程分档显示,如X1档(显示范围1Hz~9999Hz),X10档(显示范围0.001KHz~9.999KHz),X100档(显示范围0.100KHz~999.9KHz)...可以自定义各档位的范围。
量程选择通过程序自动选择量程。
(3)测量响应时间小于等于10秒,将测量出的频率以十进制格式在实验板上的4个数码管上显示。

(4)若是方波能够测量方波的占空比,并通过数码管显示。
2025/3/5 21:35:45 15.12MB VHDL频率计
1
a=(w1*x12-x1*xw1)/(n*x12-x1*x1);b=(n*xw1-x1*w1)/(n*x12-x1*x1);
2025/1/12 10:37:40 728B 最小二乘法
1
带饱和函数的二阶跟踪微分器,二阶跟踪微分器是一个这样的动态系统:对它输入一个信号v(t),它将输出两个信号x1和x2,其中x1是跟踪v(t),从而x2作为v(t)的“近似微分”
2024/10/19 5:31:34 20KB simulink SONTD
1
利用fft实现线性卷积。
已知序列x1=[1234],x2=[136542];
利用conv函数求x1和x2的线性卷积y(n)并绘出图形;
另外,利用fft求x1和x2的9点循环卷积,并绘出图形;
在用fft求x1与x2的8点和10点循环卷积,并绘出图形,比较四次结果,说明线性卷积与循环卷积的关系。
2024/9/26 21:18:12 841B 实现线性卷积
1
x1为累计家庭数百分比,y为累计收入百分比,替换一下,还可以画出洛伦兹曲线
2024/9/12 10:39:38 574B 基尼系数 matlab
1
现在我们回到LDA的原理上,我们在第一节说讲到了LDA希望投影后希望同一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大,但是这只是一个感官的度量。
现在我们首先从比较简单的二类LDA入手,严谨的分析LDA的原理。
    假设我们的数据集D={(x1,y1),(x2,y2),...,((xm,ym))}D={(x1,y1),(x2,y2),...,((xm,ym))},其中任意样本xixi为n维向量,yi∈{0,1}yi∈{0,1}。
我们定义Nj(j=0,1)Nj(j=0,1)为第j类样本的个数,Xj(j=0,1)Xj(j=0,1)为第j类样本的集合,而μj(j=0,1)μj(j=0,1)为第j类样本的均值向量,定义Σj(j=0,1)Σj(j=0,1)为第j类样本的协方差矩阵(严格说是缺少分母部分的协方差矩阵)。
    μjμj的表达式为:μj=1Nj∑x∈Xjx(j=0,1)μj=1Nj∑x∈Xjx(j=0,1)    ΣjΣj的表达式为:Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1)Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1)    由于是两类数据,因此我们只需要将数据投影到一条直线上即可。
假设我们的投影直线是向量ww,则对任意一个样本本xixi,它在直线ww的投影为wTxiwTxi,对于我们的两个类别的中心点μ0,μ1μ0,μ1,在在直线ww的投影为wTμ0wTμ0和wTμ1wTμ1。
由于LDA需要让不同类别的数据的类别中心之间的距离尽可能的大,也就是我们要最大化||wTμ0−wTμ1||22||wTμ0−wTμ1||22,同时我们希望同一种类别数据的投影点尽可能的接近,也就是要同类样本投影点的协方差wTΣ0wwTΣ0w和wTΣ1wwTΣ1w尽可能的小,即最小化wTΣ0w+wTΣ1wwTΣ0w+wTΣ1w。
综上所述,我们的优化目标为:argmaxwJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)wargmax⏟wJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)w    我们一般定义类内散度矩阵SwSw为:Sw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)TSw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)T    同时定义类间散度矩阵SbSb为:Sb=(μ0−μ1)(μ0−μ1)TSb=(μ0−μ1)(μ0−μ1)T    这样我们的优化目标重写为:argmaxwJ(w)=wTSbwwTSwwargmax⏟wJ(w)=wTSbwwTSww    仔细一看上式,这不就是我们的广义瑞利商嘛!这就简单了,利用我们第二节讲到的广义瑞利商的性质,我们知道我们的J(w)J(w)最大值为矩阵S−12wSbS−12wSw−12SbSw−12的最大特征值,而对应的ww为S−12wSbS−12wSw−12SbSw−12的最大特征值对应的特征向量!而S−1wSbSw−1Sb的特征值和S−12wSbS−12wSw−12SbSw−12的特征值相同,S−1wSbSw−1Sb的特征向量w′w′和S−12wSbS−12wSw−12SbSw−12的特征向量ww满足w′=S−12www′=Sw−12w的关系!    注意到对于二类的时候,SbwSbw的方向恒为μ0−μ1μ0−μ1,不妨令Sbw=λ(μ0−μ1)Sbw=λ(μ0−μ1),将其带入:(S−1wSb)w=λw(Sw−1Sb)w=λw,可以得到w=S−1w(μ0−μ1)w=Sw−1(μ0−μ1),也就是说我们只要求出原始二类样本的均值和方差就可以确定最佳的投影方向ww了。
2024/7/30 21:57:26 3KB MATLAB 人脸识别 LDA knn
1
共 57 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡