有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的功能会比期望差很多。
数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的功能。
如果数据倾斜没有解决,完全没有可能进行功能调优,其他所有的调优手段都是一个笑话。
数据倾斜是最能体现一个spark大数据工程师水平的功能调优问题。
数据倾斜如果能够解决的话,代表对spark运行机制了如指掌。
数据倾斜俩大直接致命后果。
1数据倾斜直接会导致一种情况:OOM。
2运行速度慢,特别慢,非常慢,极端的慢,不可接受的慢。
我们以10
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡