高并发经常会发生在有大活跃用户量,用户高聚集的业务场景中,如:秒杀活动,定时领取红包等。
为了让业务可以流畅的运行并且给用户一个好的交互体验,我们需要根据业务场景预估达到的并发量等因素,来设计适合自己业务场景的高并发处理方案。
在电商相关产品开发的这些年,我有幸的遇到了并发下的各种坑,这一路摸爬滚打过来有着不少的血泪史,这里进行的总结,作为自己的归档记录,同时分享给大家。
服务器架构业务从发展的初期到逐渐成熟,服务器架构也是从相对单一到集群,再到分布式服务。
一个可以支持高并发的服务少不了好的服务器架构,需要有均衡负载,数据库需要主从集群,nosql缓存需要主从集群,静态文件需要上传cdn,这些都是能
2025/6/17 5:06:55 204KB 大话程序猿眼里的高并发架构
1
简介:
"Spring-Common-prj" 是一个与Spring框架相关的项目,可能是为了封装一些通用的功能或提供共用的服务。
Spring是Java开发中的一个核心框架,尤其在企业级应用开发中广泛使用,它提供了依赖注入(Dependency Injection,DI)、面向切面编程(Aspect-Oriented Programming,AOP)以及一系列强大的功能,如数据访问、事务管理、远程服务支持等。
在这个项目中,我们可以推测开发者可能已经创建了一些Spring Bean,用于处理常见的业务逻辑或者提供公共服务。
Spring Bean是由Spring容器管理的Java对象,它们可以通过XML配置文件、注解或者Java配置类来定义和配置。
容器负责创建Bean实例、管理它们的生命周期以及处理Bean之间的依赖关系。
文件"spring-common-prj-main"可能包含了项目的主入口,这通常是启动Spring应用程序的关键部分。
在Java中,这个主入口通常是一个包含`main`方法的类,它会初始化Spring的ApplicationContext,加载配置文件,并启动应用。
Spring的ApplicationContext是Spring容器的主要实现,它负责读取配置元数据,创建和管理Bean,并提供事件发布等功能。
在Spring项目中,开发者可能会使用Spring Boot,这是一个简化Spring应用初始搭建以及开发过程的框架。
Spring Boot的特点是开箱即用,内置了Tomcat服务器,可以快速构建独立的、生产级别的基于Spring的应用。
同时,它还提供了自动配置功能,极大地减少了配置代码。
此外,Spring框架还包括Spring MVC,这是一个用于构建Web应用程序的模块。
Spring MVC通过模型-视图-控制器(Model-View-Controller,MVC)架构模式,实现了业务逻辑与用户界面的分离,使得开发更加灵活。
开发者可能会在项目中创建控制器类,处理HTTP请求,调用业务服务,然后返回视图结果。
Spring Data则提供了一种统一的方式来访问各种数据存储,包括JPA(Java Persistence API)用于ORM(Object-Relational Mapping),Spring Data JPA可以帮助我们更方便地操作数据库。
还有Spring Data MongoDB支持NoSQL数据库,提供了与MongoDB交互的便捷API。
在"Spring-Common-prj"中,可能还涉及了Spring AOP,这是Spring提供的面向切面编程支持。
通过AOP,开发者可以定义“切面”——一组相关或相互关联的横切关注点,如日志、事务管理等,并将它们模块化为可重用的组件。
"Spring-Common-prj"是一个可能包含了通用功能和服务的Spring项目,涵盖了Spring框架的核心特性,如依赖注入、面向切面编程、Web应用开发以及数据访问。
通过深入研究这个项目,我们可以学习到如何有效地使用Spring来构建和组织复杂的Java应用。
2025/6/15 19:51:11 4KB
1
简介:
Hadoop是大数据处理的核心框架,尤其在互联网行业中广泛应用于海量数据的存储和计算。
以下是Hadoop相关的重要知识点的详细说明:1. 分布式文件系统(HDFS):HDFS是Hadoop的基础,它是一种分布式文件系统,设计目标是处理大规模的数据集。
它将大文件分割成块并分布在多台机器上,保证数据的冗余和容错性。
HDFS遵循ACID特性,确保原子性、一致性、隔离性和持久性。
2. HBase:HBase是一个基于HDFS的分布式NoSQL数据库,提供实时访问和随机写入。
它的Shell工具提供了规范化的输入规则,包括名称参数、数值、参数分割和关键字-值输入规则。
HBase的管理命令涵盖表管理、数据管理、工具、复制和其他功能,用于优化性能的策略包括参数配置、表设计、更新操作、读取操作、数据压缩、JVM垃圾收集(GC)优化和负载均衡。
3. Hive:Hive作为Hadoop上的数据仓库工具,允许使用类似SQL的语言(HQL)来查询和管理存储在HDFS中的大数据。
Hive架构包含用户接口、Hive服务器、驱动程序和元数据库。
数据在Hive中按库、表、分区和桶进行组织,有行格式和文件存储格式两种数据存储方式,支持多种基本和复杂数据类型。
4. Sqoop:Sqoop是数据迁移工具,它使得在Hadoop和传统数据库之间传输数据变得更加便捷。
它可以将RDBMS中的数据导入HDFS,利用MapReduce或Hive等工具进行处理,处理后的结果还能再导回关系型数据库。
5. ZooKeeper:ZooKeeper是Hadoop生态系统中的关键组件,提供高可用的集中配置管理和命名服务。
它帮助集群中的节点进行协调,实现分布式锁、选举和分组服务,确保集群稳定运行。
这些知识点涵盖了Hadoop生态系统中的主要组件及其功能,对于理解和应用Hadoop平台至关重要。
通过深入理解这些概念,可以有效地管理和优化Hadoop环境,以适应大数据处理的需求。
2025/6/15 19:49:06 25KB
1
pdf密码:密码dsjsfcHbase是一种NoSQL数据库,这意味着它不像传统的RDBMS数据库那样支持SQL作为查询语言。
Hbase是一种分布式存储的数据库,技术上来讲,它更像是分布式存储而不是分布式数据库,它缺少很多RDBMS系统的特性,比如列类型,辅助索引,触发器,和高级查询语言等。
2025/6/11 0:47:27 3.44MB hbase 大数据
1
MySQL8.0.15是一个重要的数据库管理系统版本,由Oracle公司维护和开发。
这个版本在MySQL的发展历程中引入了许多新特性和改进,旨在提供更高的性能、安全性和可扩展性。
以下是对MySQL8.0.15中关键知识点的详细解释:1.**增强的性能**:MySQL8.0系列着重于提升查询处理速度和并发性能。
例如,InnoDB存储引擎的优化使得多线程并行插入和更新更加高效。
另外,分区功能的改进也提高了大数据量表的操作性能。
2.**窗口函数**:MySQL8.0引入了SQL标准的窗口函数,如ROW_NUMBER()、RANK()和DENSE_RANK(),这使得在复杂的数据分析和排序场景中编写更简洁的查询。
3.**JSON函数增强**:MySQL8.0提供了更多用于操作JSON数据类型的函数,比如JSON_EXTRACT、JSON_INSERT、JSON_REPLACE和JSON_ARRAY,增强了对非结构化数据的支持。
4.**通用表表达式(CommonTableExpressions,CTE)**:CTE是一种高级查询构造,允许用户定义临时的结果集,可以用于复杂的子查询或递归查询,使查询代码更清晰易读。
5.**动态柱状图(DynamicColumns)**:虽然不是标准SQL功能,但MySQL8.0提供了一种存储多个值的方法,类似于NoSQL数据库的键值对,这在某些场景下可以提高数据存储的灵活性。
6.**更好的密码安全**:MySQL8.0引入了新的默认加密算法,如caching_sha2_password,增强了数据库系统的安全性。
7.**增强的复制功能**:包括半同步复制的改进,以及GroupReplication的引入,提供了高可用性和故障切换能力。
8.**在线DDL(DataDefinitionLanguage)**:在8.0版本中,许多DDL操作可以在线完成,这意味着在表结构改变时,用户不必等待长时间的锁定,减少了对业务的影响。
9.**InnoDB存储引擎改进**:包括更好的内存管理,更高效的行格式(如DYNAMIC和COMPRESSED),以及支持更大页大小,以适应更大的数据记录。
10.**性能分析工具**:MySQL8.0提供了PerformanceSchema的增强,帮助管理员监控和优化系统性能。
11.**分区表的增强**:增加了更多的分区类型,如RANGECOLUMNS和LISTCOLUMNS,使得分区策略更为灵活。
12.**改进的备份和恢复**:MySQL8.0提供了新的备份工具,如`mysqldump`和`mysqlpump`,它们可以更快、更可靠地备份和恢复数据库。
在实际使用中,"mysql-8.0.15-winx64"压缩包包含了适用于Windows64位系统的MySQL安装文件。
安装后,可以通过配置服务器参数、创建数据库、用户权限设置等步骤来搭建和管理数据库环境。
在管理和开发过程中,应充分利用上述新特性,以实现更高效、安全的数据管理。
2025/4/15 21:37:48 184.15MB MYSQL8 mysql
1
精心整理大学英语四级必备单词4505个,包含单词,释义等字段,可下载应用于数据库基础数据构建上层应用,数据格式为json,noSql数据库可以直接导入,sql数据库请自行转换结构。
2025/4/3 15:01:12 496KB 英语四级 CET4 json 单词
1
《大数据HBase——JavaAPI深度解析》在大数据领域,HBase作为一个分布式、列式存储的NoSQL数据库,因其高效、可扩展的特性而被广泛应用。
本资料主要围绕HBase的JavaAPI进行深入探讨,旨在帮助读者理解并掌握如何利用Java进行HBase的操作。
HBase是构建在Hadoop文件系统(HDFS)之上的,它提供了实时读写能力,适用于海量数据的存储。
其设计灵感来源于Google的Bigtable,但HBase更注重于提供高并发和低延迟的数据访问。
HBase的数据模型是基于行的,每个表由行和列族组成,列族下又包含多个列,这样的设计使得数据的存储和查询更加灵活。
在JavaAPI层面,我们首先需要了解HBase的基本操作类,如HBaseAdmin用于管理表,HTable接口用于与表交互,HTableDescriptor用于描述表的结构。
创建表时,我们需要定义表名和列族,列族下可以动态添加列。
例如:```javaHTableDescriptordesc=newHTableDescriptor(TableName.valueOf("myTable"));desc.addFamily(newHColumnDescriptor("cf"));//创建一个名为"cf"的列族```插入数据到HBase中,我们使用Put对象,将数据放入行键和列键对应的单元格中:```javaPutput=newPut(Bytes.toBytes("rowKey"));put.addColumn(Bytes.toBytes("cf"),Bytes.toBytes("qualifier"),Bytes.toBytes("value"));htable.put(put);```查询数据则通过Get对象,指定行键和列键,获取对应单元格的值:```javaGetget=newGet(Bytes.toBytes("rowKey"));get.addColumn(Bytes.toBytes("cf"),Bytes.toBytes("qualifier"));Resultresult=htable.get(get);```HBase还提供了Scan对象,用于扫描表中的多行数据。
通过设置StartRow和StopRow,我们可以指定扫描的范围;
通过addFamily和addColumn,我们可以指定扫描的列族或特定列。
```javaScanscan=newScan();scan.addFamily(Bytes.toBytes("cf"));ResultScannerscanner=htable.getScanner(scan);for(Resultres:scanner){//处理结果}```此外,HBase的JavaAPI也支持批量操作,如BulkLoadHFile,这在导入大量数据时能显著提升效率。
还有RegionServer和ZooKeeper的角色,它们在HBase集群中起着至关重要的作用,确保数据的分布和一致性。
在处理大数据时,HBase的性能优化也是一个重要话题。
例如,合理设置region的大小,避免热点问题;
使用合适的数据模型和索引策略,优化查询性能;
使用Compaction控制数据文件的合并,保持数据的整洁。
总之,HBase作为大数据存储的重要工具,其JavaAPI提供了丰富的功能,让开发者能够灵活地操作和管理大数据。
通过深入学习和实践,我们可以充分利用HBase的优势,解决大规模数据处理的挑战。
2025/3/22 0:51:17 134.67MB hbase
1
精心整理2020年热门高分电影TOP250名录,包含电影名称,导演,年份,类别,评语,海报图等字段,可下载应用于数据库基础数据构建上层应用,数据格式为json,noSql数据库可以直接导入,sql数据库请自行转换结构。
2025/3/8 2:40:57 107KB 高分电影 名录 2020年 json
1
Neo4j是一个高性能的,NOSQL图形数据库,它将结构化数据存储在网络上而不是表中。
它是一个嵌入式的、基于磁盘的、具备完全的事务特性的Java持久化引擎,但是它将结构化数据存储在网络(从数学角度叫做图)上而不是表中。
Neo4j也可以被看作是一个高性能的图引擎,该引擎具有成熟数据库的所有特性。
程序员工作在一个面向对象的、灵活的网络结构下而不是严格、静态的表中——但是他们可以享受到具备完全的事务特性、企业级的数据库的所有好处。
63KB neo4j
1
最新数据进行整理,包含小学、初中、高中大约27万+条数据,更可以根据自己需要随时通过数据库进行添加使用说明:使用数据库导入工具导入mysql数据库即可。
如需其他数据库如nosql请自行转换即可。
此数据库包含三个表:nobook_city:城市表nobook_school:学校表nobook_schooltype:学校类型表具体使用方式:导入数据库后,通过省份城市及学校类型进行筛选,并且学校数据表已经设置首字母,所以可以根据首字母快速查找数据库内含WINDOWS版和MAC版school.sql数据库。
2024/12/7 2:16:10 4.25MB 数据库
1
共 50 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡