%MATLAB数学建模工具箱%%本工具箱主要包含三部分内容%1.MATLAB常用数学建模工具的中文帮助%2.贡献MATLAB数学建模工具(打*号)%3.中国大学生数学建模竞赛历年试题MATLAB程序%数据拟合%interp1-一元函数插值%spline-样条插值%polyfit-多项式插值或拟合%curvefit-曲线拟合%caspe-各种边界条件的样条插值%casps-样条拟合%interp2-二元函数插值%griddata-不规则数据的二元函数插值%*interp-不单调节点插值%*lagrange-拉格朗日插值法%%方程求根%inv-逆矩阵%roots-多项式的根%fzero-一元函数零点%fsolve-非线性方程组%solve-符号方程解%*newton-牛顿迭代法解非线性方程%%微积分和微分方程%diff-差分%diff-符号导函数%trapz-梯形积分法%quad8-高精度数值积分%int-符号积分%dblquad-矩形域二重积分%ode45-常微分方程%dsolve-符号微分方程%*polyint-多项式积分法%*quadg-高斯积分法%*quad2dg-矩形域高斯二重积分%*dblquad2-非矩形域二重积分%*rk4-常微分方程RungeKutta法%%随机模拟和统计分析%max,min-最大,最小值%sum-求和%mean-均值%std-标准差%sort-排序(升序)%sortrows-按某一列排序(升序)%rand-[0,1]区间均匀分布随机数%randn-标准正态分布随机数%randperm-1...n随机排列%regress-线性回归%classify-统计聚类%*trim-坏数据祛除%*specrnd-给定分布律随机数生成%*randrow-整行随机排列%*randmix-随机置换%*chi2test-分布拟合度卡方检验%%数学规划%lp-线性规划%linprog-线性规划(在MATLAB5.3使用)%fmin-一元函数极值%fminu-多元函数极值拟牛顿法%fmins-多元函数极值单纯形搜索法%constr-非线性规划%fmincon-非线性规划(在MATLAB5.3使用)%%离散优化%*enum-枚举法%*monte-蒙特卡洛法%*lpint-线性整数规划%*L01p_e-0-1整数规划枚举法%*L01p_ie-0-1整数规划隐枚举法%*bnb18-非线性整数规划(在MATLAB5.3使用)%*bnbgui-非线性整数规划图形工具(在MATLAB5.3使用)%*mintreek-最小生成树kruskal算法%*minroute-最短路dijkstra算法%*krusk-最小生成树kruskal算法mex程序%*dijkstra-最短路dijkstra算法mex程序%*dynprog-动态规划%%%图形%plot-平面曲线(一元函数)%plot3-空间曲线%mesh-空间曲面(二元函数)%*meshf-非矩形网格图%*draw-用鼠标划光滑曲线%%中国大学生数学建模竞赛题解%jm96a-捕鱼策略%jm96b-节水洗衣机%jm96bfun-节水洗衣机优化函数%jm97a-零件参数设计%jm97afun-零件参数函数%jm97aoptim-零件参数设计优化函数%jm97b-截断切割%jm97bcount-截断切割枚举法%jm97brule-截断切割优化准则%jm98a1-风险投资模型求解%jm98a2-风险投资模型讨论%jm98a3-收益与风险非线性模型求解%jm98a3fun-收益与风险非线性模型优化函数%jm98b-灾情巡视路线(C程序)%jm99a1-自动化车床模型一%jm99a1fun-自动化车床模型目标函数%jm99a1simu-自动化车床模型随机模拟%jm99asmfun-自动化车床模型费用函数%%演示程序%fun
1
matlabk-mean在灰度图下使用方法的的例子
2024/12/31 14:51:50 406B k-mean matlab
1
解压后439.3MB2016年7月最新V3.4--Angle是一个后台管理模板,它也支持以下应用开发:单页应用(SinglePageApplication)、项目管理应用(ProjectManagementSystem)、电子商务应用(E-CommerceAdminDashboard)、CMS、CRM、SAAS、HelpDesk,以及个人及商务应用开发。
该资源包包含以下模板项目包:AngularJS完整应用模板和空模板;
HTML5/jQuery完整应用模板和空模板;
MaterialDesign完整应用模板和空模板;
ASP.NETMVC5/6+AngularJS完整应用模板和空模板;
ASP.NETMVC5/6+HTML5/jQuery完整应用模板和空模板;
RubyonRailsHTML5/jQuery完整应用模板和空模板;
MeteorJS+AngularJS完整应用模板和空模板;
MEANJS完整应用模板和空模板;
ReactJS完整应用模板和空模板;
前台展示页模板。
预览地址:http://themicon.co/theme/angle/v3.3/frontend/site/AngularJS版本Dashboard:http://themicon.co/theme/angle/v3.3/backend-angular/StaticHTML5:http://themicon.co/theme/angle/v3.3/backend-jquery/AngularMaterial:http://themicon.co/theme/angle/v3.3/material/ASP.NETMVC5:http://themicon-001-site1.smarterasp.net/RubyonRails:https://angle-on-rails.herokuapp.com/MeanJS:https://angle-on-mean.herokuapp.com/MeteorJS:https://45.55.64.191/ReactJS:http://themicon.co/theme/angle/v3.3/reactjs/
2024/12/25 7:12:44 44.22MB Angle Bootstrap V3.4 后台
1
meanshift均值平移跟踪算法中核函数窗宽的自动选取代码,根据目标大小变化核窗宽,使得当目标出现大小变化时准确跟踪到目标中心.
2024/12/21 6:30:40 5KB 图像识别
1
MeanShift算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束.Comaniciu等人[3][4]把MeanShift成功的运用的特征空间的分析,在图像平滑和图像分割中MeanShift都得到了很好的应用.Comaniciu等在文章中证明了,MeanShift算法在满足一定条件下,一定可以收敛到最近的一个概率密度函数的稳态点,因此MeanShift算法可以用来检测概率密度函数中存在的模态.
2024/11/21 9:44:11 3KB Mean_Shift (分割)
1
自动选择跟踪窗尺度的Mean-Shift算法
356KB Mean-Shift
1
sigmoid函数:nonlin(输出矩阵,矩阵,[是否求导(boolean)])底数矩阵:NumInd(输出矩阵,底常数,矩阵,[矩阵是否要系数(Double)])矩阵指数:ArrInd(输出矩阵,指常数,矩阵,[矩阵是否要系数(Double)])数加矩阵:NumAdd(输出矩阵,加常数,矩阵,[矩阵是否要系数(Double)])数减矩阵:NumSub(输出矩阵,被减数,矩阵,[矩阵是否要系数(Double)])数乘矩阵:NumDot(输出矩阵,被乘数,矩阵,[矩阵是否要系数(Double)])矩阵加法:ArrAdd(输出矩阵,矩阵A,矩阵B,[结果是否要系数(Double)])矩阵减法:ArrSub(输出矩阵,矩阵A,矩阵B,[结果是否要系数(Double)])哈达玛积:ArrDot(输出矩阵,矩阵A,矩阵B,[结果是否要系数(Double)])数乘矩阵:NumDot(输出矩阵,乘常数,矩阵)矩阵乘法:Dot(输出矩阵,矩阵A,矩阵B)矩阵可视化:ArrVis(矩阵)输出字符串转置矩阵:ArrT(输出矩阵,矩阵,[结果是否要系数(Double)])一维数组矩阵化:ArrA(输出矩阵,列数,一维数组)元素矩阵化:Arr(输出矩阵,列数,元素1,元素2,元素3...)矩阵绝对值:ArrAbs(输出矩阵,矩阵,[结果是否要系数(Double)])矩阵元素平均:Mean(矩阵)输出双精度小数随机小数矩阵:Rand(输出矩阵,行数,列数,[矩阵是否要系数])随机整数矩阵:intRand(输出矩阵,行数,列数,下限,上限)
2024/7/30 3:02:33 10KB VB 矩阵
1
本人作为matlab初学者,在研读PCANet源代码过程中,对im2col_mean_removal.m,PCA_FilterBank.m,PCANet_output.m,HashingHist.m和PCANet_train.m中的相关函数做了详细的注释
1
利用matlab编写的K均值图像分类程序
2024/6/13 5:24:18 1KB matlab 图像分类 k均值 k-mean
1
=高斯混合模型行人检测,Mean-Shift跟踪计数,实现行人准确跟踪,在线统计人数,安防预测
2024/6/5 4:25:19 195.04MB 检测跟踪计数
1
共 33 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡