python版本的k-means算法可选择类别数量,运行之前需要安装numpy与matplotlib
2024/11/22 0:46:50 7KB k-means
1
基于K-means算法的遥感图像分类的matlab实现,基本没什么用
2024/9/15 18:34:50 8.61MB k-means
1
1、掌握数据预处理的方法,对数据进行预处理;
2、掌握基本K-MEANS算法的使用;
2024/7/24 13:49:28 276KB K-MEANS聚类
1
本工程文件实现了K-means算法,对输入的样本数据实现了聚类分析,其中测试的样本数据在工程文件下的K-means文件夹下
2024/6/23 20:52:44 2.72MB K-means C++
1
为了提高雷达调制信号在电子对抗环境中的分选准确度,建立了基于偏联系数模糊聚类(PCFCM)算法和教与学随机森林(TLRF)算法的雷达调制信号分选(PCFCM-TLRF)模型。
该模型引入偏联系数(PCN)改进K均值聚类(K-means)算法,优化模糊C均值聚类(FCM)算法,用优化后的FCM算法对信号样本集进行预处理;
使用“教与学”优化(TLBO)算法优化随机森林(RF)算法,使优化后的RF算法能够以更低的复杂度构成更优的分类器;
将预处理后的样本作为TLRF中的训练样本实现信号分选。
研究结果表明,与其他分选模型相比,PCFCM-TLRF模型具有更高的分选准确度,能够有效地实现雷达调制信号的分选。
1
文件中.m文件是通过k-means算法对文件中的图像进行非监督分类,可直接运行!
2024/4/11 20:19:02 214KB matlab
1
实验描述:对指定数据集进行聚类分析,选择适当的聚类算法,编写程序实现,提交程序和结果报告。
数据集:IrisDataSet(见附件一),根据花的属性进行聚类。
数据包括四个属性:sepallength花萼长度,sepalwidth花萼宽度,petallength花瓣长度,petalwidth花瓣宽度。
其中第五个值表示该样本属于哪一个类。
样本点间的距离直接用向量的欧氏距离。
2024/2/14 17:19:40 15KB 聚类分析
1
此算是是对k-means算法的改进
2024/2/12 20:51:30 2.16MB k-means
1
有源码,有文件
2024/2/10 6:11:02 2KB kmeans算法 大数据 源码 文件
1
1.C4.5:是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。
2.K-means算法:是一种聚类算法。
3.SVM:一种监督式学习的方法,广泛运用于统计分类以及回归分析中4.Apriori:是一种最有影响的挖掘布尔关联规则频繁项集的算法。
5.EM:最大期望值法。
6.pagerank:是google算法的重要内容。
7.Adaboost:是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器然后把弱分类器集合起来,构成一个更强的最终分类器。
8.KNN:是一个理论上比较成熟的的方法,也是最简单的机器学习方法之一。
9.NaiveBayes:在众多分类方法中,应用最广泛的有决策树模型和朴素贝叶斯(NaiveBayes)10.Cart:分类与回归树,在分类树下面有两个关键的思想,第一个是关于递归地划分自变量空间的想法,第二个是用验证数据进行减枝
2024/1/25 9:25:40 626KB 数据
1
共 38 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡