高校计算方法上机作业对矩阵进行LDLT分解及cholesky分解的matlab程序
2024/3/12 18:41:35 1KB matlab 计算方法 LDLT分解 cholesky分解
1
SuiteSparse是世界上最优秀的系数矩阵处理工程之一。
但是SuiteSparse提供的官方代码仅包含在matlab、linux环境下编译的生成文件,不能生成在windows操作系统下VS环境下的C++库函数。
本文件包括一个库函数cs.cpp和一个头文件cs.h,其中的代码是移植自SuiteSparse官方代码中的Csparse原始代码,功能包括除了复数矩阵以外的所有功能,已成功在vs2010的c++环境下执行过,在毕业设计中用于求解超大型稀疏矩阵的线性方程组(也就是大型稀疏矩阵的除法)。
以下是SuiteSparse的介绍。
SuiteSparse是一组C、Fortran和MATLAB函数集,用来生成空间稀疏矩阵数据。
在SuiteSparse中几何多种稀疏矩阵的处理方法,包括矩阵的LU分解,QR分解,Cholesky分解,提供了解非线性方程组、实现最小二乘法等多种函数代码。
2023/11/11 17:04:26 21KB 稀疏矩阵运算 SuiteSparse vs2010
1
C语言算法速查手册目录第1章 绪论 11.1 程序设计语言概述 11.1.1 机器语言 11.1.2 汇编语言 21.1.3 高级语言 21.1.4 C语言 31.2 C语言的优点和缺点 41.2.1 C语言的优点 41.2.2 C语言的缺点 61.3 算法概述 71.3.1 算法的基本特征 71.3.2 算法的复杂度 81.3.3 算法的准确性 101.3.4 算法的稳定性 14第2章 复数运算 182.1 复数的四则运算 182.1.1 [算法1] 复数乘法 182.1.2 [算法2] 复数除法 202.1.3 【实例5】复数的四则运算 222.2 复数的常用函数运算 232.2.1 [算法3] 复数的乘幂 232.2.2 [算法4] 复数的n次方根 252.2.3 [算法5] 复数指数 272.2.4 [算法6] 复数对数 292.2.5 [算法7] 复数正弦 302.2.6 [算法8] 复数余弦 322.2.7 【实例6】复数的函数运算 34第3章 多项式计算 373.1 多项式的表示方法 373.1.1 系数表示法 373.1.2 点表示法 383.1.3 [算法9] 系数表示转化为点表示 383.1.4 [算法10] 点表示转化为系数表示 423.1.5 【实例7】 系数表示法与点表示法的转化 463.2 多项式运算 473.2.1 [算法11] 复系数多项式相乘 473.2.2 [算法12] 实系数多项式相乘 503.2.3 [算法13] 复系数多项式相除 523.2.4 [算法14] 实系数多项式相除 543.2.5 【实例8】 复系数多项式的乘除法 563.2.6 【实例9】 实系数多项式的乘除法 573.3 多项式的求值 593.3.1 [算法15] 一元多项式求值 593.3.2 [算法16] 一元多项式多组求值 603.3.3 [算法17] 二元多项式求值 633.3.4 【实例10】 一元多项式求值 653.3.5 【实例11】 二元多项式求值 66第4章 矩阵计算 684.1 矩阵相乘 684.1.1 [算法18] 实矩阵相乘 684.1.2 [算法19] 复矩阵相乘 704.1.3 【实例12】实矩阵与复矩阵的乘法 724.2 矩阵的秩与行列式值 734.2.1 [算法20] 求矩阵的秩 734.2.2 [算法21] 求一般矩阵的行列式值 764.2.3 [算法22] 求对称正定矩阵的行列式值 804.2.4 【实例13】求矩阵的秩和行列式值 824.3 矩阵求逆 844.3.1 [算法23] 求一般复矩阵的逆 844.3.2 [算法24] 求对称正定矩阵的逆 904.3.3 [算法25] 求托伯利兹矩阵逆的Trench方法 924.3.4 【实例14】验证矩阵求逆算法 974.3.5 【实例15】验证T矩阵求逆算法 994.4 矩阵分解与相似变换 1024.4.1 [算法26] 实对称矩阵的LDL分解 1024.4.2 [算法27] 对称正定实矩阵的Cholesky分解 1044.4.3 [算法28] 一般实矩阵的全选主元LU分解 1074.4.4 [算法29] 一般实矩阵的QR分解 1124.4.5 [算法30] 对称实矩阵相似变换为对称三对角阵 1164.4.6 [算法31] 一般实矩阵相似变换为上Hessen-Burg矩阵 1214.4.7 【实例16】对一般实矩阵进行QR分解 1264.4.8 【实例17】对称矩阵的相似变换 1274.4.9 【实例18】一般实矩阵相似变换 1294.5 矩阵特征值的计算 1304.5.1 [算法32] 求上Hessen-Burg矩阵全部特征值的QR方法 1304.5.2 [算法33] 求对称三对角阵的全部特征值 1374.5.3 [算法34] 求对称矩阵特征值的雅可比法 1434.5.4 [算法35] 求对称矩阵特征值的雅可比过关法 1474.5.5 【实例19】求上Hessen-Burg矩阵特征值 1514.5.6 【实例20】分别用两种雅克比法求对称矩阵特征值 152第5章 线性代数方程组的求解 1545.1 高斯消去法 1545.1.1 [算法36] 求解复系数方程组的全选主元高斯消去法 1555.1.2 [算法37] 求解实系数方程组的全选主元高斯消去法 1605.1.3 [算法38] 求解复系数方程组的全选主元高斯-约当消去法 1635.1.4 [算法39] 求解实系数方程组的全选主元高斯-约当消去法 1685.1.5 [算法40] 求解大型
2023/10/26 14:13:36 218KB 算法速查
1
matlab马科维茨代码QMD算法这是用于商最小度算法(QMD)的健壮Matlab代码。
在数值分析中,最小度算法是用于在应用Cholesky分解之前对对称稀疏矩阵的行和列进行置换的算法,以减少Cholesky因子中的非零数。
最小度算法经常用在有限元方法中,其中只能根据网格的拓扑而不是偏微分方程中的系数来进行节点的重新排序,从而在使用相同的网格来节省效率时各种系数值。
QMD算法的上限严格为O(n2m)。
语境找到最佳排序的问题是一个NP完全问题,因此很棘手,因此改用启发式方法。
最小度算法是从Markowitz于1959年首次提出的用于解决非对称线性规划问题的方法中衍生出来的,下面将对此进行粗略地描述。
在高斯消除的每个步骤中,都执行行和列置换,以使枢轴行和列中偏离对角非零的数量最小。
Tinow和Walker在1967年描述了一种对称方式的Markowitz方法,Rose后来又推导了该图的图形理论方式,其中仅模拟了因式分解,这被称为最小度算法。
当存在相同程度的选择时,这种算法的一个关键方面是突破打破策略。
输入和输出perm:theoutputpermutatio
2020/11/14 18:43:03 19KB 系统开源
1
对于研一同学,数值计算的编程大作业是不可避免的一项任务。
本资源包含以下6个大作业的具体数学原理、实验结论和matlab程序,每一步matlab程序本人都尽做大程度进行标注,不懂的地方可以私信我实验一:利用拉格朗日的插值多项式的振荡景象(等距节点、随机节点、分段二次插值、切比雪夫多项式零点)实验二:最小二乘曲线拟合(直线、抛物线进行最小二乘拟合及验证)实验三:数值积分(变步长复化梯形公式、变步长复化辛普森、龙贝格法)实验四:线性方程组数值求解(Cholesky分解、LU分解、Jacobi迭代法、Gauss-Seidel迭代法)实验五:非线性方程求根(二分法、Newton法、弦截法)实验六:常微分初值问题数值解法(改进欧拉法、经典四阶龙格库塔法)
2020/6/10 11:04:34 6.84MB matlab 数值计算 研究生大作业
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡