这是一个研究车牌号码数字识别的综合性工程,从最基本的BP分类,到分别用遗传算法和粒子群算法对BP网络进行优化分类,再到利用Hopfield神经网络对数字进行识别分类。
所有代码均能直接运行,并有准备的结果,并且包括数字号码的图像库,识别结果明确。
由于本人在此花费了不少精力,所以资源分标了10分,希望能对同学的毕业设计起到作用。
1
使用五通道肌电信号数据,对数据进行分类,内附实验数据,可以直接运行,程序简洁明了
2024/4/26 2:39:40 176KB 分类算
1
使用matlab训练集成分类器,这里使用的是BP网络,也可以很方便地改为其他分类器,与单个BP分类器相比,正确率由87%上升到97.9,有明显地提高。
2024/1/15 18:06:12 14.51MB matlab BP adaboost
1
可以进行遥感影像的读取,然后对其进行添加了最小距离的分类方法以及NDVI的计算、bp分类、ppi端元提取,代码的整体系很强,可以进行随意的添加以及修改。
2023/9/10 21:15:32 31.68MB NDVI 遥感影像读取 最小距离分类 bp分类
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡