Remarkableadvancesincomputationanddatastorageandthereadyavailabilityofhugedatasetshavebeenthekeystothegrowthofthenewdisciplinesofdataminingandmachinelearning,whiletheenormoussuccessoftheHumanGenomeProjecthasopenedupthefieldofbioinformatics.Theseexcitingdevelopments,whichledtotheintroductionofmanyinnovativestatisticaltoolsforhigh-dimensionaldataanalysis,aredescribedhereindetail.Theauthortakesabroadperspective;forthefirsttimeinabookonmultivariateanalysis,nonlinearmethodsarediscussedindetailaswellaslinearmethods.Techniquescoveredrangefromtraditionalmultivariatemethods,suchasmultipleregression,principalcomponents,canonicalvariates,lineardiscriminantanalysis,factoranalysis,clustering,multidimensionalscaling,andcorrespondenceanalysis,tothenewermethodsofdensityestimation,projectionpursuit,neuralnetworks,multivariatereduced-rankregression,nonlinearmanifoldlearning,bagging,boosting,randomforests,independentcomponentanalysis,supportvectormachines,andclassificationandregressiontrees.Anotheruniquefeatureofthisbookisthediscussionofdatabasemanagementsystems.Thisbookisappropriateforadvancedundergraduatestudents,graduatestudents,andresearchersinstatistics,computerscience,artificialintelligence,psychology,cognitivesciences,business,medicine,bioinformatics,andengineering.Familiaritywithmultivariablecalculus,linearalgebra,andprobabilityandstatisticsisrequired.Thebookpresentsacarefully-integratedmixtureoftheoryandapplications,andofclassicalandmodernmultivariatestatisticaltechniques,includingBayesianmethods.Thereareover60interestingdatasetsusedasexamplesinthebook,over200exercises,andmanycolorillustrationsandphotographs.
1