《数字图像处理——应用篇》是由谷口庆治编著的一本深入探讨图像处理技术的专业书籍,这本书在图像处理领域具有很高的权威性。
全书完整PDF版本是唯一可获取的全面资源,对于学习和研究图像处理技术的读者来说,无疑是一份宝贵的资料。
图像处理是计算机科学中的一个重要分支,它涉及了将模拟图像转换为数字形式,以及对数字图像进行各种操作以改善质量或提取有用信息。
在《数字图像处理——应用篇》中,作者谷口庆治详细阐述了这一领域的关键概念和技术,包括图像获取、颜色模型、图像增强、图像复原、图像分割、特征提取以及模式识别等核心主题。
1.**图像获取**:这部分介绍了图像传感器的工作原理,如CCD和CMOS,以及扫描仪和相机的成像过程。
同时,还涵盖了像素的概念、采样理论和量化过程。
2.**颜色模型**:书中详细讨论了RGB、CMYK、HSV、YCbCr等常见颜色模型,以及它们在不同应用场景下的选择和转换方法。
3.**图像增强**:通过滤波器、直方图均衡化等手段改善图像的视觉效果,提升图像质量,这部分包括线性和非线性滤波、对比度增强等技术。
4.**图像复原**:针对图像退化问题,如噪声、模糊等,提出了一系列恢复技术,如Wiener滤波、反卷积等。
5.**图像分割**:这是图像分析的关键步骤,包括阈值分割、区域生长、边缘检测等方法,用于将图像划分为有意义的部分。
6.**特征提取**:为了识别和理解图像,需要从图像中提取有意义的特征,如角点、边缘、纹理和形状,这些特征可用于后续的模式识别和对象识别。
7.**模式识别**:利用机器学习算法,如支持向量机、神经网络、决策树等,对图像中的模式进行分类和识别,是图像处理领域的高阶应用,广泛应用于OCR文字识别、人脸识别、医学影像分析等领域。
8.**OCR文字识别**:光学字符识别技术是模式识别的一个实例,通过识别图像中的文字并转化为可编辑文本,该技术在文档自动化处理、图书数字化等方面有着广泛的应用。
压缩包中的文件名表明资源分为了三个部分:`数字图像处理——应用篇.part1.rar`、`数字图像处理——应用篇.part2.rar`和`数字图像处理——应用篇.part3.rar`。
通常,这种分卷压缩格式是为了便于大文件的传输和存储,用户需要下载所有部分并使用合适的解压工具(如WinRAR或7-Zip)合并解压,才能获得完整的PDF文件。
《数字图像处理——应用篇》是一本涵盖广泛、深度适中的教材,适合计算机视觉、图像处理、模式识别等相关领域的学生和研究人员。
通过学习本书,读者不仅可以掌握基本的图像处理技术,还能了解其在实际应用中的策略和方法,为进入这个领域的深入研究打下坚实基础。
1
基于c++和深度学习算法的骨架检测算法,可以实时运行,但需要基本的Nvidia的显卡,实测显卡750TI可以实时
2025/6/23 11:29:46 85.92MB OpenPose-master c++ cv
1
Python实现MapReduce的WordCount(hadoop平台)在进行大数据处理时,JAVA程序用的较多,但是,想要把深度学习算法用到MapReduce中,Python是深度学习和数据挖掘处理数据较为容易的语言,所以基于以上考虑,本文介绍了使用python实现MapReduce中的WordCount实验
2025/6/12 12:05:46 33KB 大数据 python mapreduce
1
EM算法也就是期望最大化算法,是一种无指导的学习算法。
ThislittlesoftwareistherealizationofEMalgorithmintheapplicationoftossiingthecoin,whichisdescribedinthepaperofMichaelCollinsin1997.下载包中包含:源代码、可执行程序、关于EM算法的paper
2025/4/26 4:23:40 2.05MB 机器学习 EM算法 期望最大化
1
详细说明:很不错的流形学习算法包含了MDSPCAISOMAPLLE等算法
2025/4/24 12:54:56 14KB 流形学习 matlab
1
BPNet算法是一种最有效的多层神经网络学习方法算法实现分类。
包括已实现的代码和训练、测试的数据集。
2025/4/16 12:45:30 10KB python BP
1
极限学习机(ExtremeLearningMachine)ELM,是由黄广斌提出来的求解单隐层神经网络的算法。
ELM最大的特点是对于传统的神经网络,尤其是单隐层前馈神经网络(SLFNs),在保证学习精度的前提下比传统的学习算法速度更快。
2025/3/10 3:06:58 64KB ELM 极限学习机 MATLAB程序
1
极限学习机(ExtremeLearningMachine,ELM)是一类基于前馈神经网络(feedforwardneuronnetwork)的机器学习算法,其主要特点是隐含层节点参数可以是随机或人为给定的且不需要调整,学习过程仅需计算输出权重。
ELM具有学习效率高和泛化能力强的优点,被广泛应用于分类、回归、聚类、特征学习等问题中。
2025/3/9 14:55:18 4.24MB ML 机器学习 人工智能 极限学习机
1
基于改进机器学习算法的电商用户购买预测,胡智超,杨福兴,近年来,电商平台陡增的巨额订单量容易导致快递爆仓,也极大地超过了物流系统的运载能力。
本文采用现有的数据挖掘技术分析用户的
2025/2/19 7:26:19 298KB 首发论文
1
对当前支持向量机核函数中多核学习进行就介绍和综述
2025/2/1 4:40:05 334KB 多核学习
1
共 159 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡