QuantificationofMDL-inducedsignaldegradationinMIMO-OFDMmode-divisionmultiplexingsystems
2023/7/29 23:30:47 2.12MB 研究论文
1
Amulti-focusopticalfiberlensisnumericallydemonstratedbasedonanall-dielectricmetasurfacestructure.Themetasurfaceconsistsofanarrayofrectangularsiliconresonatorswithvaryingwidthsinordertoobtaintherequiredphasedistribution.Thecorediameterofthemultimodefiberislargeenoughtocontainsufficientresonanceunits.Thespatialdistributionofthedielectricresonatorsisdictatedbyspatialmultiplexing,includinginterleavingmeta-atomsandlensaperturedivisio
2023/7/21 11:36:40 857KB 论文
1
1.OFDM的基本原理2.SynthesisofBand-LimitedOrthogonalSignalsforMultichannelDataTransmission3.Peled_Ruiz_Frequencydomaindatatransmissionusingreducedcomputationalcomplexityalgorithms4.Weinstein_Ebert_DataTransmissionbyFrequency-DivisionMultiplexingUsingtheDiscreteFourierTransform
2023/6/15 1:55:49 9.14MB OFDM
1
Thispaperfirstly,tothebestofourknowledge,proposedtwo-dimensional(2D)encryptionbasedontheArnoldtransformationforimplementingasecureDC-biasedopticalorthogonaltime-frequencymultiplexing(DCO-OTFM)inoptical-wirelesscommunications(OWCs).Theencrypteddataistransformedtotheparticular2Dmatrixanddecryptedbytheonlykeytogetthecorrectinformation.Meanwhile,thenumberofkeysin2Dencryptionisenormous,whichpreventseavesdroppersfromexhaustivelysearch
2023/6/8 9:29:27 836KB 论文
1
《迈向5G-C-RAN:需要、架构与挑战》白皮书自从2009年,中国挪动初次提出C-RAN不雅点,已经有7年。
期间中国挪动络续相持着每一隔多少年宣告一个版本的C-RAN白皮书,向业界传递C-RAN阻滞并召唤业界怪异到场C-RAN的研发。
这期间,中国挪动络续相持不懈地在增长C-RAN群集化枚举以及相助化本领在现网中的使用,并钻研无线云收集,为最终实现无线通讯网的“Open&Soft”的目的而格斗。
自从中国挪动的收集进入4G期间,前传收集对于传输资源破费过高而相对于应传输资源有限的收集梦想,使患上C-RAN在中国挪动收集的使用受到了未必限度,其阻滞也相对于迟钝。
而从2014年起,经由引入无源波分配置配备枚举WDM(Wavelength-divisionMultiplexing)以及CPRI(Co妹妹onPublicRadioInterface,通用人民无线电接口)收缩本领,未必水平上处置了前传收集的光纤资源破费过多的下场。
继而,在2015年至2016年年中,中国挪动在一年的功夫内建议了多省的C-RAN规模枚举的验证责任。
经由福建、江苏、安徽三省的规模枚举以及临时运维验证,不光证明晰C-RAN组网方式在综剖析本、无线相助化抗干扰、飞腾能耗等方面上风明晰,也证明晰C-RAN付与无源WDM(彩光)传输方案的10站如下的小规模群集,飞腾了对于机房的配电、空间、牢靠性等申请,经由临时运维,在运维难度、缺陷率等都未明晰回升。
2015年的4期TD-LTE建树指点不雅点中,将C-RAN作为优选建树方式在全网举行履行。
目前C-RAN在内地多省已经末了了全网的使用。
相较于C-RAN的群集化、相助化以及绿色节能方面在中挪动现网的增长,无线云化的不雅点也垂垂被业界普及的付与,C-RAN在引入收集成果虚构化NFV(NetworkFunctionsVirtualization)框架后,更是带来了无线资源敏捷编排的上风。
另一方面,面向5G,基于群集/漫衍单元CU/DU(CentralizedUnit/DistributedUnit)的两级架构也已经被业界所招供,这一收集架构与无线云化的松散,组成为了5GC-RAN的两个底子因素。
随着越来越多的产业界公司末了投入5GC-RAN的研发,松散更多产业相助同伴怪异钻研以及处置无线云化在5G收集使用上的下场以及挑战,将是C-RAN本领钻研以及产业增长的下一个目的。
本白皮书与2014年头宣告的《C-RAN无线接中计绿色演进3.0》以及2016年松散产业相助同伴怪异宣告的《NGFI:下一代前传收集接口》白皮书一脉相承,重点在于叙述无线云收集底子不雅点以及本领因素,经由产业界各方松散宣告本白皮书,咱们阻滞进一步增长无线云收集(Cloud-RAN,C-RAN的四个不雅点之一)的成熟,并减速增长无线云配置配备枚举的商用进程。
2023/4/1 21:44:18 683KB 5G C-RAN 移动白皮书
1
Invisiblelightco妹妹unication,orthogonalfrequencydivisionmultiplexing(OFDM)isaneffectiveapproachtoimprovethesystemspeed.However,thenonlinearityofthelight-emittingdiode(LED)suppressesthetransmissionperformance.Thelow-frequencypartofthetransmittedsignalfromLEDsuffe
2019/1/5 8:07:42 823KB
1
S32K144通用端口功效选择一览表
2020/2/5 8:31:25 94KB S32K144 通用端口
1
正交频分复用(OFDM,OrthogonalFrequencyDivisionMultiplexing)技术可以出色的对抗抗多径衰落、消除码间干扰且具有极高的频谱利用率。
此外它还采用了快速傅立叶变换,大大降低了收发机的实现复杂度,因此被广泛地应用于HDSL、ADSL、DAB、HDTV、WLAN等领域中。
但是,目前OFDM技术还有很多关键问题没有得到有效解决,如对频偏敏感、高峰均功率比问题等,这些都限制了OFDM技术的近一步广泛应用。
本论文主要围绕自适应压扩法降低峰均功率比问题展开论述,并利用matlab软件完成了仿真。
主要做了以下工作:论文首先回顾OFDM发展历程,说明了该技术的优缺点,讲解了OFDM技术原理,介绍了OFDM信号的产生过程,并对OFDM信号的收发机制进行了仿真。
接着,给出峰均功率比的定义和分布,分析了产生高峰均值的原因,简要地介绍了其它预畸变方法,如限幅法,峰值加窗,传统的压扩技术。
最后,分析自适应压扩法降低PAPR的功能,并用matlab完成相关仿真。
2017/5/20 19:49:40 1.18MB 自适应压扩法 PAPR 峰均比 OFDM
1
(含源码及报告)本程序分析了自2016年到2021年(外加)每年我国原油加工的产量,并且分析了2020年全国各地区原油加工量等,含饼状图,柱状图,折线图,数据在地图上显示。
运转本程序需要requests、bs4、csv、pandas、matplotlib、pyecharts库的支持,如果缺少某库请自行安装后再运转。
文件含6个excel表,若干个csv文件以及一个名字为render的html文件(需要用浏览器打开),直观的数据处理部分是图片以及html文件,可在地图中显示,数据处理的是excel文件。
不懂可以扫文件中二维码在QQ里面问。
2022/9/30 16:31:44 29.75MB 爬虫 python 源码软件 开发语言
1
作者:ProfessorKwang-ChengChen,ProfessorRamjeePrasad出书:Wiley2009目录Prefacexi1WirelessCommunications11.1WirelessCommunicationsSystems11.2OrthogonalFrequencyDivisionMultiplexing(OFDM)31.2.1OFDMConcepts41.2.2MathematicalModelofOFDMSystem51.2.3OFDMDesignIssues91.2.4OFDMA211.3MIMO241.3.1Space-TimeCodes241.3.2SpatialMultiplexingUsingAdaptiveMultipleAntennaTechniques271.3.3Open-loopMIMOSolutions271.3.4Closed-loopMIMOSolutions291.3.5MIMOReceiverStructure311.4Multi-userDetection(MUD)341.4.1Multi-user(CDMA)Receiver341.4.2SuboptimumDS/CDMAReceivers37References402SoftwareDefinedRadio412.1SoftwareDefinedRadioArchitecture412.2DigitalSignalProcessorandSDRBasebandArchitecture432.3ReconfigurableWirelessCommunicationSystems462.3.1UnifiedCommunicationAlgorithm462.3.2ReconfigurableOFDMImplementation472.3.3ReconfigurableOFDMandCDMA472.4DigitalRadioProcessing482.4.1ConventionalRF482.4.2DigitalRadioProcessing(DRP)BasedSystemArchitecture52References583WirelessNetworks593.1MultipleAccessCommunicationsandALOHA603.1.1ALOHASystemsandSlottedMultipleAccess613.1.2SlottedALOHA613.1.3StabilisedSlottedALOHA643.1.4ApproximateDelayAnalysis653.1.5UnslottedALOHA663.2SplittingAlgorithms663.2.1TreeAlgorithms673.2.2FCFSSplittingAlgorithm683.2.3AnalysisofFCFSSplittingAlgorithm693.3CarrierSensing713.3.1CSMASlottedALOHA713.3.2SlottedCSMA763.3.3CarrierSenseMultipleAccesswithCollisionDetection(CSMA/CD)793.4Routing823.4.1FloodingandBroadcasting833.4.2ShortestPathRouting833.4.3OptimalRouting833.4.4HotPotato(Reflection)Routing843.4.5Cut-throughRouting843.4.6InterconnectedNetworkRouting843.4.7ShortestPathRoutingAlgorithms843.5FlowControl893.5.1WindowFlowControl893.5.2RateControlSchemes913.5.3QueuingAnalysisoftheLeakyBucketScheme9
2015/5/14 13:23:51 7.73MB Cognitive Radio Networks
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡