贝塞尔曲线是一种在计算机图形学和数学中广泛使用的参数化曲线,它提供了对形状的精细控制,特别是在曲线拟合和路径设计中。
本资源包含MATLAB源码,用于实现从一阶到八阶的贝塞尔曲线拟合,以及一个拟合后评价标准的文档。
一、贝塞尔曲线基础贝塞尔曲线由法国工程师PierreBézier于1962年提出,它基于控制点来定义。
一阶贝塞尔曲线是线性,二阶是二次曲线,而高阶曲线则可以构建出更复杂的形状。
对于n阶贝塞尔曲线,需要n+1个控制点来定义。
这些曲线的特性在于它们通过首尾两个控制点,并且随着阶数的增加,曲线更好地逼近中间的控制点。
二、MATLAB实现MATLAB是一个强大的数值计算和可视化工具,其脚本语言非常适合进行这样的曲线拟合工作。
`myBezier_ALL.m`文件很可能是包含了从一阶到八阶贝塞尔曲线的生成函数。
这些函数可能接收控制点的坐标作为输入,然后通过贝塞尔曲线的数学公式计算出对应的参数曲线。
MATLAB中的贝塞尔曲线可以通过`bezier`函数或直接使用矩阵运算来实现。
三、贝塞尔曲线拟合拟合过程通常涉及找到一组控制点,使得生成的贝塞尔曲线尽可能接近给定的一系列数据点。
这可能通过优化算法,如梯度下降或遗传算法来实现。
在`myBezier_ALL.m`中,可能包含了一个或多个函数来执行这个过程,尝试最小化曲线与数据点之间的距离或误差。
四、拟合的评价标准"拟合的评价标准.doc"文档可能详述了如何评估拟合的好坏。
常见的评价标准包括均方误差(MSE)、均方根误差(RMSE)或者R²分数。
这些指标可以量化拟合曲线与实际数据点之间的偏差程度。
MSE和RMSE衡量的是平均误差的平方,而R²分数表示模型解释了数据变异性的比例,值越接近1表示拟合越好。
五、应用领域贝塞尔曲线在多个领域有广泛应用,包括但不限于CAD设计、游戏开发、动画制作、图像处理和工程计算。
MATLAB源码的提供,对于学习和研究贝塞尔曲线的特性和拟合方法,或者在项目中创建平滑曲线路径,都是非常有价值的资源。
这份MATLAB源码和相关文档为理解并实践贝塞尔曲线拟合提供了一个完整的工具集。
通过学习和利用这些材料,用户不仅可以掌握贝塞尔曲线的基本概念,还能深入理解如何在实际问题中运用它们进行曲线拟合和评估。
2025/6/30 9:00:23 25KB 贝塞尔曲线 曲线拟合
1
用matlab实现huffman编码。
输入为一维行矩阵p,p为各符号的概率分布,概率和为1,各元素值为正,输出H矩阵为对应每个符号概率的码字,L为输出码字的平均码长。
Huffman.m运用典型的IF和FOR控制流循环语句,该程序包括两个IF控制流和5个FOR循环结构。
2025/6/30 1:21:21 918B huffman matlab
1
模糊相似矩阵Matlab程序,%三次样条插值程序
2025/6/28 18:57:33 202B 模糊相似矩阵;matlab
1
通过矩阵来计算行列式,支持分数形式输出,也就是说精确到分数,呵呵
2025/6/28 15:43:37 4KB 行列式计算
1
复杂网络聚类系数的matlab编程代码,将复杂网络存储为矩阵,再对其matLab编程,求得复杂网络的集类系数
2025/6/27 18:56:15 921B 复杂网络
1
MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar(最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正)(声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计)(按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE','AIC','MDL','CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。
)………………………………以上省略……………………………………………………………………假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下:Y=x;Y(1:n)=[];m=N-n;X=[];%构造系数矩阵fori=1:m  forj=1:n      X(i,j)=xt(ni-j);  endendbeta=inv(X'*X)*X'*Y';复制代码beta即为用最小二乘法估计出的模型参数。
此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。
相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。
4.3.3AR模型阶次的选择及实验设计文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(SingularValueDecomposition,SVD)定阶法、最小预测定误差阶准则(FinalPredictionErrorCriterion,FPE)、AIC定阶准则(Akaika’sInformationtheoreticCriterion,AIC)、MDL定阶准则以及CAT定阶准则。
文献[28]中还介绍了一种BIC定阶准则。
SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。
其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。
以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分):form=1:N-1  ……    %判断是否达到所选定阶准则的要求  ifstrcmp(criterion,'FPE')    objectfun(m1)=(N(m1))/(N-(m1))*E(m1);  elseifstrcmp(criterion,'AIC')    objectfun(m1)=N*log(E(m1))2*(m1);  elseifstrcmp(criterion,'MDL')    objectfun(m1)=N*log(E(m1))(m1)*log(N);  elseifstrcmp(criterion,'CAT')    forindex=1:m1        temp=temp(N-index)/(N*E(index));    end    objectfun(m1)=1/N*temp-(N-(m1))/(N*E(m1));  end    ifobjectfun(m1)>=objectfun(m)    orderpredict=m;    break;  endend复制代码orderpredict变量即为使用相应准则预测的AR模型阶次。
(注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion)登录/注册后可看大图程序1.JPG(35.14KB,下载次数:20352)下载附件 保存到相册2009-8-2820:54上传登录/注册后可看大图程序2.JPG(51.78KB,下载次数:15377)下载附件 保存到相册2009-8-2820:54上传下面本文使用3.2.1实验设计的输出结果即20例经预处理的HRV信号序列作为实验对象,分别使用FPE、AIC、MAL和CAT定阶准则预测AR模型阶次,图4.1(见下页)为其中一例典型信号使用不同预测准则其目标函数随阶次的变化情况。
从图中可以看出,使用FPE、AIC以及MDL定阶准则所预测的AR模型阶次大概位于10附近,即阶次10左右会使相应的目标函数最小化,符合定阶准则的要求,使用CAT定阶准则预测的阶次较小,在5~10之间。
图4.2(见下页)为另一例信号的阶次估计情况,从中也可以得到同样的结论。
(注,实验信号为实验室所得,没有上传)登录/注册后可看大图图片1.JPG(28.68KB,下载次数:5674)下载附件 保存到相册2009-8-2820:54上传
2025/6/27 16:08:25 6KB matlab
1
N皇后问题求解支持4—9皇后问题,修改源码调用参数和存储矩阵大小,可以支持更大棋盘求解。
QT新手,做的不好,ヾ(●´□`●)ノ【゜+。
・o谢谢o・。
+゜】ヾ(○´□`○)ノ
2025/6/26 22:45:53 958KB QT 皇后 八皇后 递归
1
在VC中编写的求逆矩阵的C++源文件,可以直接使用。
进行LU分解,求方程组的解,供大家参考。
2025/6/25 2:05:37 35KB 矩阵求逆 C++
1
UI设计包括界面设计、菜单栏布局、进度条、结果展示和图片展示区域划分几个主要任务。
图像预处理包括图像的灰度化、二值化、反色处理、图形锐化、数字分割、归一化等主要任务。
特征提取为使用不同的特征提取方法,对于预处理过的图像,进行数字特征提取。
图像识别是对于数字图像,将特征提取出的数字矩阵数组,采用不同的识别方法,一个个地识别出他们对应的数字,最终显示在界面。
2025/6/24 19:37:25 206.13MB fisher knn svm recognition
1
一个有montecaro模拟晶粒生长的Matlab源程序一个MonteCaro的模拟晶粒生长的程序%初始赋值Ln=200;%格点边长L=zeros(Ln);%格点矩阵Q=120;%总取向数step_num=500;%MC总步数interval_save_jpg=20;%图形存储间隔interval_stastics=2;%晶粒平均参数和相对密度统计间隔stastics_data=zeros(step_num/interval_stastics,5);%存储每interval_stastics次MCS后的平均晶粒尺寸和相对密度,存储格式为(MCS,graincount,averagearea,averagediameter,relativedensity)
2025/6/23 8:25:47 42KB MC 晶粒生长
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡