收集了2507个web服务的信息.QWS度量是使用作者开发的WebServiceBroker(WSB)框架进行的.与第一版相比主要有以下区别:(1)数量大大增加(365->2507)(2)不包含WsRFranking和classification参数
2024/12/17 0:02:13 273KB QWS dataset
1
将此cpp替换掉vs2015编译好的caffe里的classification.cpp,输入不同的模型参数,最终效果很好
2024/9/20 17:04:27 3KB caffe 表情预测 性别预测 年龄预测
1
OpenLayers草皮(olturf)是的工具栏。
工具栏提供以下功能:可显示的可自定义命令收集命令输入的表格显示数字输出的弹出窗口在地图上选择输入要素输出要素显示在地图中除了显示所有可用的Turf命令外,还可以选择单个命令或显示预定义组的子集。
以下群体可aggregation,classification,data,grids,interpolation,measurement,misc,joins,transformation。
入门可以通过添加工具栏的依赖项将其添加到OpenLayers映射中<linkhref="https://cdn.rawgit.com/openlayers/openlayers.github.io/master/en/v5.3.0/css/ol.css"rel="stylesheet"type="text/css"/><linkhref="https://unpkg.com/olturf/dist/olturf.min.css"rel="styl
2024/9/5 4:01:19 1.99MB javascript algorithm geospatial gis
1
FuzzyBroadLearning中Classification部分的matlab代码
2024/4/26 6:02:13 8KB machine learning matlab broad
1
RBM-on-Classification,用RBM所做的分类,里面包含源码和数据集,独立于任何工具箱,整个就是一个工程,里面有仿真和图像,还有各种有用的数据函数
2024/2/15 14:08:08 1.35MB RBM分类
1
DataMining:TheTextbookBy作者:CharuC.AggarwalISBN-10书号:3319141414ISBN-13书号:9783319141411Edition版本:2015出版日期:2015-04-14pages页数:(734)$89.99Thistextbookexploresthedifferentaspectsofdataminingfromthefundamentalstothecomplexdatatypesandtheirapplications,capturingthewidediversityofproblemdomainsfordataminingissues.Itgoesbeyondthetraditionalfocusondataminingproblemstointroduceadvanceddatatypessuchastext,timeseries,discretesequences,spatialdata,graphdata,andsocialnetworks.Untilnow,nosinglebookhasaddressedallthesetopicsinacomprehensiveandintegratedway.Thechaptersofthisbookfallintooneofthreecategories:Fundamentalchapters:Datamininghasfourmainproblems,whichcorrespondtoclustering,classification,associationpatternmining,andoutlieranalysis.Thesechapterscomprehensivelydiscussawidevarietyofmethodsfortheseproblems.Domainchapters:Thesechaptersdiscussthespecificmethodsusedfordifferentdomainsofdatasuchastextdata,time-seriesdata,sequencedata,graphdata,andspatialdata.Applicationchapters:Thesechaptersstudyimportantapplicationssuchasstreammining,Webmining,ranking,recommendations,socialnetworks,andprivacypreservation.Thedomainchaptersalsohaveanappliedflavor.Appropriateforbothintroductoryandadvanceddataminingcourses,DataMining:TheTextbookbalancesmathematicaldetailsandintuition.Itcontainsthenecessarymathematicaldetailsforprofessorsandresearchers,butitispresentedinasimpleandintuitivestyletoimproveaccessibilityforstudentsandindustrialpractitioners(includingthosewithalimitedmathematicalbackground).Numerousillustrations,examples,andexercisesareincluded,withanemphasisonsemanticallyinterpretableexamples.
2023/12/10 1:06:56 9.81MB network
1
CIFAR10-img-classification-tensorflow-master.zip
2023/8/2 19:08:58 512KB tensorflow
1
分类学习工具箱,里面包含SVM、决策树、Knn等各类分类器,使用非常方便。
2023/8/2 18:57:39 616KB MATLAB
1
Inresponsetotheexponentiallyincreasingneedtoanalyzevastamountsofdata,NeuralNetworksforAppliedSciencesandEngineering:FromFundamentalstoComplexPatternRecognitionprovidesscientistswithasimplebutsystematicintroductiontoneuralnetworks.Beginningwithanintroductorydiscussionontheroleofneuralnetworksinscientificdataanalysis,thisbookprovidesasolidfoundationofbasicneuralnetworkconcepts.Itcontainsanoverviewofneuralnetworkarchitecturesforpracticaldataanalysisfollowedbyextensivestep-by-stepcoverageonlinearnetworks,aswellas,multi-layerperceptronfornonlinearpredictionandclassificationexplainingallstagesofprocessingandmodeldevelopmentillustratedthroughpracticalexamplesandcasestudies.LaterchapterspresentanextensivecoverageonSelfOrganizingMapsfornonlineardataclustering,recurrentnetworksforlinearnonlineartimeseriesforecasting,andothernetworktypessuitableforscientificdataanalysis.Withaneasytounderstandformatusingextensivegraphicalillustrationsandmultidisciplinaryscientificcontext,thisbookfillsthegapinthemarketforneuralnetworksformulti-dimensionalscientificdata,andrelatesneuralnetworkstostatistics.FeaturesxExplainsneuralnetworksinamulti-disciplinarycontextxUsesextensivegraphicalillustrationstoexplaincomplexmathematicalconceptsforquickandeasyunderstanding?Examinesin-depthneuralnetworksforlinearandnonlinearprediction,classification,clusteringandforecastingxIllustratesallstagesofmodeldevelopmentandinterpretationofresults,includingdatapreprocessing,datadimensionalityreduction,inputselection,modeldevelopmentandvalidation,modeluncertaintyassessment,sensitivityanalysesoninputs,errorsandmodelparametersSandhyaSamarasingheobtainedherMScinMechanicalEngineeringfromLumumbaUniversityinRussiaandanMSandPhDinEngineeringfromVirginiaTech,USA.
2023/7/13 16:31:44 6.77MB 神经网络
1
利用GlobalMapper软件对LiDAR点云数据进行分类的流程图。
2023/7/8 11:39:47 3.5MB GlobalMapper LiDAR Classify
1
共 22 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡