GlidePalette下载在您的模块中compile'com.github.florent37:glidepalette:2.1.2'compile'com.github.bumptech.glide:glide:4.6.1'样品Glide.with(this).load(url).listener(GlidePalette.with(url).use(GlidePalette.Profile.MUTED_DARK).intoBackground(textView).intoTextColor(textView).use(GlidePalette.Profile.VIBRANT).intoBackground(titleView,GlidePalette.Swatch.RGB)
2024/4/16 1:58:03 2.56MB android color palette material
1
使用RabbitMQ3.6.4,配合WCF的发送接收消息的Demo,亲测可用,用到的Client.dll从Nuget自动下载。
2024/2/6 16:02:33 2.95MB rabbit wcf
1
UnityWebPlayerFull4.6.1UnityWebPlayer完整版
2024/1/11 8:04:27 5.46MB WebPlayer 4.6.1
1
Git扩展GitExtensions是用于管理git存储库的独立UI工具。
它还与Windows资源管理器和MicrosoftVisualStudio(2015/2017/2019)集成。
有一个问题?来和我们谈谈:或给我们发推文当前状态版本3.x仅Windows运行环境微软Windows7SP1+MS.NETFramework4.6.1+发展历程MSVS2019(v16.8+),C#9VC++(用于安装程序的x86/x64包括ATL)当前开发人员状态翻译版本2.5x此流包含在Windows(MS.NETFramework)和Linux/Mac(Mono)上运行的最新跨平台版本。
[更多...]此流包含在Windows(MS.NETFramework)和Linux/Mac(Mono)上运行的最新跨平台版本。
该代码处于维护模式,没有计划进行任何积极的开发。
当前仅移植了某些错误修复程序,但是可能需要考虑从v3.x流移植某些功能。
有关更多详细信息,请参阅。
视窗Linux/Mac运行
2023/12/5 11:52:09 21.08MB git gitextensions git-client hacktoberfest
1
第1章绪论1.1合成孔径雷达概况1.2发展历程1.2.1国外SAR发展历程1.2.2我国SAR发展历程1.3发展趋势1.4主要应用1.4.1军事领域1.4.2民用领域1.5内容安排第2章合成孔径雷达2.1概述2.2SAR成像基本原理2.2.1距离向分辨率与脉冲压缩技术2.2.2方位向分辨率与合成孔径原理2.2.3点目标信号回波模型2.2.4SAR成像处理与算法2.3SAR成像的几何特性2.3.1斜距图像的比例失真2.3.2透视收缩与顶底位移2.3.3雷达阴影2.3.4雷达视差与立体观察第3章雷达目标电磁散射计算3.1概述3.1.1电磁散射基本计算方法3.1.2严格的经典解法3.1.3近似求解方法3.2等效电磁流计算3.2.1等效电磁流奇异性的消除3.2.2等效电磁流的分析与计算3.3多次散射的计算3.3.1几何/物理光学混合算法3.3.2存在多重散射的条件和遮挡关系的判断3.3.3几何光学/等效电磁流混合算法3.3.4GO/PO混合方法的应用3.4腔体结构电磁散射RCS计算3.4.1复射线近轴近似电磁散射算法3.4.2计算实例3.5复杂目标电磁散射的计算3.5.1复杂目标几何建模3.5.2复杂目标电磁散射混合计算第4章合成孔径雷达图像特征分析4.1概述4.2SAR图像辐射特征4.2.1SAR图像回波强度的概率分布4.2.2辐射分辨率4.3SAR图像噪声特征4.4SAR图像目标几何特征4.4.1点目标4.4.2线目标4.4.3面目标4.5SAR图像灰度统计特征4.5.1幅度特征4.5.2直方图特征4.5.3统计特征4.6SAR图像纹理特征4.6.1方向差分特征4.6.2灰度共现特征4.6.3小波纹理能量特征第5章合成孔径雷达图像分割5.1概述5.2阈值分割法5.2.1基于遗传算法的二维最大熵阈值分割法5.2.2二维模糊熵阈值分割法5.2.3双阈值分割算法5.3基于马尔可夫随机场模型的分割法5.3.1吉布斯MEF分割模型5.3.2吉布斯MRF分割算法5.3.3多尺度MRF图像分割5.4基于多尺度几何分析的分割法5.4.1基于Contourlet变换的SAR图像分割5.4.2基于Wedgelet变换的SAR图像分割5.5分割评价方法5.5.1分割质量评价5.5.2适用情况分析第6章合成孔径雷达图像目标分类6.1概述6.1.1分类流程6.1.2评价标准6.2概率密度函数估计6.2.1单-密度函数6.2.2混合密度函数6.2.3有限混合密度函数的逼近能力6.3参数估计6.3.1极大似然估计6.3.2EM算法6.4最小距离分类法6.5最大后验概率分类法6.6支持向量机分类法6.6.1支持向量机原理6.6.2支持向量机分类法6.7隐马尔可夫优化分类法6.7.1HMM原理6.7.2HMOC模型第7章合成孔径雷达图像目标识别7.1概述7.1.1识别方法7.1.2自动目标识别系统7.2基于电磁特性的目标识别7.3典型目标识别7.3.1道路识别7.3.2机场识别7.3.3MSTAR坦克识别第8章合成孔径雷达图像融合8.1概述8.1.1图像融合概念8.1.2融合效果评价8.2SAR图像与可见光图像融合8.2.1提升小波变换8.2.2基于提升小波变换区域统计特性的融合算法8.3SAR图像与多光谱图像融合8.3.1主成分分析方法8.3.2基于主成分分析的SAR与多光谱图像融合8.4多波段SAR图像融合8.4.1基于atrous算法方向滤波器组的多波段SAR图像灰度融合8.4.2多波段SAR图像伪彩色融合第9章合成孔径雷达图像压缩9.1概述9.1.1第一代和第二代压缩技术9.1.2多尺度方向分析技术9.2SAR图像压缩中的典型特征9.2.1纹理特征9.2.2变换域系数统计特征9.3SAR图像Non-SWMDA压缩方法9.3.1不可分离小波的提升实现9.3.2基于块分割的二叉树编码方案设计9.4SAR图像压缩效果评价9.4.1保真度准则9.4.2特征衡量标准
2023/10/25 11:11:44 43.18MB 合成孔径雷达 雷达成像 SAR成像
1
本书对数据挖掘的基本算法进行了系统介绍,每种算法不仅介绍了算法的基本原理,而且配有大量例题以及源代码,并对源代码进行了分析,这种理论和实践相结合的方式有助于读者较好地理解和掌握抽象的数据挖掘算法。
全书共分11章,内容同时涵盖了数据预处理、关联规则挖掘算法、分类算法和聚类算法,具体章节包括绪论、数据预处理、关联规则挖掘、决策树分类算法、贝叶斯分类算法、人工神经网络算法、支持向量机、Kmeans聚类算法、K中心点聚类算法、神经网络聚类算法以及数据挖掘的发展等内容。
本书可作为高等院校数据挖掘课程的教材,也可以作为从事数据挖掘工作以及其他相关工程技术工作人员的参考书。
第1章绪论11.1数据挖掘的概念11.2数据挖掘的历史及发展11.3数据挖掘的研究内容及功能51.3.1数据挖掘的研究内容51.3.2数据挖掘的功能61.4数据挖掘的常用技术及工具91.4.1数据挖掘的常用技术91.4.2数据挖掘的工具121.5数据挖掘的应用热点121.6小结14思考题15第2章数据预处理162.1数据预处理的目的162.2数据清理182.2.1填充缺失值182.2.2光滑噪声数据182.2.3数据清理过程192.3数据集成和数据变换202.3.1数据集成202.3.2数据变换212.4数据归约232.4.1数据立方体聚集232.4.2维归约232.4.3数据压缩242.4.4数值归约252.4.5数据离散化与概念分层282.5特征选择与提取302.5.1特征选择302.5.2特征提取312.6小结33思考题33第3章关联规则挖掘353.1基本概念353.2关联规则挖掘算法——Apriori算法原理363.3Apriori算法实例分析383.4Apriori算法源程序分析413.5Apriori算法的特点及应用503.5.1Apriori算法特点503.5.2Apriori算法应用513.6小结52思考题52第4章决策树分类算法544.1基本概念544.1.1决策树分类算法概述544.1.2决策树基本算法概述544.2决策树分类算法——ID3算法原理564.2.1ID3算法原理564.2.2熵和信息增益574.2.3ID3算法594.3ID3算法实例分析604.4ID3算法源程序分析644.5ID3算法的特点及应用724.5.1ID3算法特点724.5.2ID3算法应用724.6决策树分类算法——C4.5算法原理734.6.1C4.5算法734.6.2C4.5算法的伪代码754.7C4.5算法实例分析764.8C4.5算法源程序分析774.9C4.5算法的特点及应用1014.9.1C4.5算法特点1014.9.2C4.5算法应用1014.10小结102思考题102第5章贝叶斯分类算法1035.1基本概念1035.1.1主观概率1035.1.2贝叶斯定理1045.2贝叶斯分类算法原理1055.2.1朴素贝叶斯分类模型1055.2.2贝叶斯信念网络1075.3贝叶斯算法实例分析1105.3.1朴素贝叶斯分类器1105.3.2BBN1125.4贝叶斯算法源程序分析1145.5贝叶斯算法特点及应用1195.5.1朴素贝叶斯分类算法1195.5.2贝叶斯信念网120思考题121第6章人工神经网络算法1226.1基本概念1226.1.1生物神经元模型1226.1.2人工神经元模型1236.1.3主要的神经网络模型1246.2BP算法原理1266.2.1Delta学习规则的基本原理1266.2.2BP网络的结构1266.2.3BP网络的算法描述1276.2.4标准BP网络的工作过程1296.3BP算法实例分析1306.4BP算法源程序分析1346.5BP算法的特点及应用1436.5.1BP算法特点1436.5.2BP算法应用1446.6小结145思考题145第7章支持向量机146
2023/9/24 16:34:35 31.33MB 数据挖掘 算法 数据仓库
1
目录诸论第1章TMS320C54x的结构原理1.1TMS320系列DSP芯片概述101.1.1TMS320系列DSP的分类及应用101.1.2TMS320C5000DSP平台111.2TMS320C54xDSP131.2.1TMS320C54x的主要特性131.2.2TMS320C54x的组成框图161.3总线结构181.4存储器191.4.1存储器空间分配201.4.2程序存储器231.4.3数据存储器241.5中央处理单元271.5.1算术逻辑运算单元281.5.2累加器A和B291.5.3桶形移位器311.5.4乘法器/加法器单元321.5.5比较、选择和存储单元331.5.6指数编码器341.5.7CPU状态和控制寄存器341.6数据寻址方式391.6.1立即寻址411.6.2绝对寻址411.6.3累加器寻址411.6.4直接寻址421.6.5间接寻址431.6.6存储器映像寄存器寻址461.6.7堆栈寻址471.7程序存储器地址生成方式481.7.1程序计数器491.7.2分支转移491.7.3调用与返回501.7.4条件操作511.7.5重复操作531.7.6复位操作541.7.7中断551.7.8省电方式591.8流水线601.8.1流水线操作601.8.2延迟分支转移621.8.3条件执行641.8.4双寻址存储器与流水线651.8.5单寻址存储器与流水线671.8.6流水线冲突和插入等待周期671.9在片外围电路711.9.1并行I/O口及通用I/O引脚711.9.2定时器721.9.3时钟发生器741.9.4主机接口781.10串行口831.10.1串行口概述831.10.2标准串行口841.11DMA控制器971.11.1DMA控制器的基本特性971.11.2子地址寻址方式971.11.3DMA通道优先级和使能控制寄存器1001.11.4DMA通道现场寄存器1021.11.5DMA编程举例1081.12外部总线1131.12.1外部总线接口1131.12.2外部总线操作的优先级别1141.12.3等待状态发生器1151.12.4分区切换逻辑1171.12.5外部总线接口定时图1181.12.6复位和IDLE3省电工作方式1201.13TMS320C54x引脚信号说明122第2章指令系统2.1指令的表示方法1302.1.1指令系统中的符号和略语1302.1.2指令系统中的记号和运算符1332.2指令系统1352.2.1指令系统概述1352.2.2指令系统分类135第3章汇编语言程序开发工具3.1TMS320C54x软件开发过程1373.2汇编语言程序的编写方法1393.3汇编语言程序的编辑、汇编和链接过程1413.4COFF的一般概念1433.4.1COFF文件中的段1433.4.2汇编器对段的处理1443.4.3链接器对段的处理1463.4.4COFF文件中的符号1483.5汇编1493.5.1运行汇编程序1493.5.2列表文件1513.5.3汇编命令1543.5.4宏定义和宏调用1543.6链接1563.6.1运行链接程序1563.6.2链接器选项1573.6.3链接器命令文件1583.6.4多个文件的链接164第4章Simulator和CCS集成开发工具的使用方法4.1Simulator的使用方法1694.1.1软件仿真器概述1694.1.2仿真命令1714.1.3仿真器初始化命令文件1744.1.4仿真外部中断1764.2什么是CCS1774.3如何安装和设置CCS1784.3.1CCS对计算机系统的配置要求1784.3.2CCS的安装与设置1784.4CCS窗口介绍1804.4.1CCS窗口示例1804.4.2CCS的菜单栏和快捷菜单1804.4.3CCS的常用工具栏1814.5如何建立工程文件1824.5.1工程文件的建立、打开和关闭1834.5.2在工程文件中添加或删除文件1834.5.3编辑源文件1834.5.4工程的构建1844.6如何调试程序1854.6.1加载可执行文件1854.6.2程序的运行和复位1864.6.3断点设置1874.6.4内存、寄存器和变量操作1884.7如何与外部文件交换数据1914.7
2023/8/25 15:41:47 3.6MB DSP结构 原理 TMS320C54X
1
TestedwithEclipseJavaEEIDEforWebDevelopers.Version:Neon.1aRelease(4.6.1)Buildid:20161007-1200
2023/8/11 19:07:47 30.7MB hadoop eclipse plugin 2.6.5
1
SPH光滑粒子流体动力学中英文都有,中文版本以及英文版的都有,拿去参考吧。
光滑粒子流体动力学-一种无网格粒子法第1章绪论1.1数值模拟1.1.1数值模拟的作用1.1.2一般数值模拟的求解过程1.2基于网格的方法1.2.1拉格朗日网格1.2.2欧拉网格1.2.3拉格朗日网格和欧拉网格的结合1.2.4基于网格的数值方法的局限性1.3无网格法1.4无网格粒子法(MPMS)1.5MPMs的求解策略1.5.1粒子描述法1.5.2粒子近似1.5.3MPMS的求解过程1.6光滑粒子流体动力学(SPH)1.6.1SPH方法1.6.2SPH方法简史1.6.3本书中的SPH方法第2章SPH的概念和基本方程2.1SPH的基本思想2.2SPH的基本方程2.2.1函数的积分表示法2.2.2函数的导数积分表示法2.2.3粒子近似法2.2.4推导SPH公式的一些技巧2.3其他基本概念2.3.1支持域和影响域2.3.2物理影响域2.3.3particle—in-cell(PIC)方法2.4结论第3章光滑函数的构造3.1引言3.2构造光滑函数的条件3.2.1场函数的近似3.2.2场函数导数的近似3.2.3核近似的连续性3.2.4粒子近似的连续性3.3构造光滑函数3.3.1构造多项式光滑函数3.3.2一些相关的问题3.3.3光滑函数构造举例3.4数值测试3.5结论第4章SPH方法在广义流体动力学问题中的应用4.1引言4.2拉格朗日型的Navier—Stokes方程4.2.1有限控制体与无穷小流体单元4.2.2连续性方程4.2.3动量方程4.2.4能量方程4.2.5Navier-Stokes方程4.3用SPH公式解Navier-Stokes方程组4.3.1密度的粒子近似法4.3.2动量方程的粒子近似法4.3.3能量方程的粒子近似法4.4流体动力学的SPH数值相关计算4.4.1人工粘度4.4.2人工热量4.4.3物理粘度4.4.4可变光滑长度4.4.5粒子间相互作用的对称化4.4.6零能模式4.4.7人工压缩率4.4.8边界处理4.4.9时间积分4.5粒子的相互作用4.5.1最近相邻粒子搜索法(NNPS)4.5.2粒子对的相互作用4.6数值算例4.6.1在不可压缩流的应用4.6.2在自由表面流的应用4.6.3SPH对可压缩流的应用4.7结论第5章非连续的SPH(DSPH)5.1引言5.2修正光滑粒子法5.2.1一维情况5.2.2多维情况5.3模拟非连续现象的DSPH公式5.3.1DSPH公式5.3.2非连续的确定5.4数值性能研究5.5冲击波的模拟5.6结论第6章SPH在爆炸模拟中的应用6.1引言6.2HE爆炸和控制方程6.2.1爆炸过程6.2.2HE的稳态爆轰6.2.3控制方程6.3SPH公式6.4光滑长度6.4.1粒子的初始分布6.4.2光滑长度的更新6.4.3优化和松弛过程6.5数值算例6.6应用SPH方法模拟锥孔炸药6.7结论第7章SPH在水下爆炸冲击模拟中的应用7.1引言7.2水下爆炸和控制方程7.2.1水下爆炸冲击的物理特性7.2.2控制方程7.3SPH公式7.4交界面处理7.5数值算例7.6真实爆炸模型与人工爆炸模型的比较研究7.7水介质缓冲模拟7.7.1背景7.7.2模拟设置7.7.3模拟结果7.7.4小结7.8结论第8章SPH方法在具有材料强度的动力学中的应用8.1引言8.2具有材料强度的动力学8.2.1控制方程8.2.2本构模型8.2.3状态方程8.2.4温度8.2.5声速8.3具有材料强度的动力学SPH公式8.4张力不稳定问题8.5自适应光滑粒子流体动力学(ASPH)8.5.1为什么需要ASPH方法8.5.2ASPH的主要思想8.6对具有材料强度的动力学的应用8.7结论第9章与分子动力学耦合的多尺度模拟9.1引言9.2分子动力学9.2.1分子动力学的基本原理9.2.2经典分子动力学9.2.3经典MD模拟9.2.4Poiseuille流的MD模拟9.3MD与FEM和FDM的耦合9.4MD与SPH的耦合9.4.1模型I:双重功能(具有重叠区域的模型)9.4.2模型Ⅱ:力桥(没有重叠区域的模型)9.4.3
2023/8/1 13:02:38 41.09MB SHP,粒子
1
第1章概述1.1单片机的结构与应用1.1.1单片机的定义、分类与内部组成1.1.2单片机应用系统的结构及其工作过程1.1.3单片机的应用1.2单片机基础知识1.2.1数制与数制间的转换1.2.2单片机中数的表示方法及常用数制的对应关系1.2.3逻辑数据的表示1.2.4单片机中常用的基本术语1.3单片机入门的有效方法与途径1.4学习单片机的基本条件1.4.1软件条件1.4.2硬件条件习题与实验第2章单片机开发软件及开发过程2.1仿真软件Proteus的使用2.1.1Proteus的主要功能特点2.1.2实例1:功能感受——Pmteus仿真单片机播放《渴望》主题曲2.1.3Proteus软件的界面与操作介绍2.1.4实例2:Proteus仿真设计快速入门2.2KeilC51的使用2.2.1单片机最小系统2.2.2实例3:用Kei1C51编写点亮一个发光二极管的程序2.3程序烧录器及烧录软件的使用习题与实验第3章逐步认识单片机基本结构3.1实例4:用单片机控制一个灯闪烁3.1.1实现方法3.1.2程序设计3.1.3用Proteus软件仿真3.1.4延时程序分析3.2实例5:将P1口状态送入P0口、P2口和P3口3.2.1实现方法3.2.2程序设计3.2.3用Proteus软件仿真3.2.4用实验板试验3.2.5I/O口功能介绍3.2.6I/O口的结构分析3.3实例6:使用P3口流水点亮8位1ED3.3.1实现方法3.3.2程序设计3.3.3用Proteus软件仿真3.3.4用实验板试验3.4实例7:通过对P3口地址的操作流水点亮8位1ED3.4.1实现方法3.4.2程序设计3.4.3用Proteus软件仿真3.4.4用实验板试验3.5MCS-51单片机存储器的基本结构3.5.1程序存储器3.5.2数据存储器3.6单片机的复位电路习题与实验第4章单片机C语言开发基础4.1C语言源程序的结构特点4.2标志符与关键字4.3C语言的数据类型与运算符4.3.1数据类型4.3.2运算符4.3.3实例8:用不同数据类型的数据控制1ED的闪烁4.3.4实例9:用P0口、P1口分别显示加法和减法运算结果4.3.5实例10:用P0口、P1口显示乘法运算结果4.3.6实例11:用P1口、P0口显示除法运算结果4.3.7实例12:用自增运算控制P0口8位1ED的闪烁花样4.3.8实例13:用P0口显示逻辑“与”运算结果4.3.9实例14:用P0口显示条件运算结果4.3.10实例15:用P0口显示按位“异或”运算结果4.3.11实例16:用P0口显示左移运算结果4.3.12实例17:“万能逻辑电路”实验4.3.13实例18:用右移运算流水点亮P1口8位1ED4.4C语言的语句4.4.1概述4.4.2控制语句4.4.3实例19:用if语句控制P0口8位LED的点亮状态4.4.4实例20:用swtich语句控制PO口8位LED的点亮状态4.4.5实例21:用for语句设计鸣笛报警程序4.4.6实例22:用while语句控制PO口8位LED闪烁花样4.4.7实例23:用dOwhile语句控制PO口8位LED流水点亮4.5C语言的数组4.5.1数组的定义和引用4.5.2实例24:用字符型数组控制PO口8位LED流水点亮4.5.3实例25:用PO口显示字符串常量4.6C语言的指针4.6.1指针的定义与引用4.6.2实例26:用PO口显示指针运算结果4.6.3实例27:用指针数组控制PO口8位LED流水点亮4.6.4实例28:用数组的指针控制PO口8位LED流水点亮4.7C语言的函数4.7.1函数的定义与调用4.7.2实例29:用PO口、P1口显示整型函数返回值4.7.3实例30:用有参函数控制PO口8位LED流水速度4.7.4实例3l:用数组作函数参数控制PO口8位LED流水点亮4.7.5实例32:用指针作函数参数控制PO口8位LED流水点亮4.7.6实例33:用函数型指针控制PO口8位LED流水点亮4.7.7实例34:用指针数组作为函数的参数显示多个字符串4.7.8实例35:字符软件ctype.h中的isalpha()函数应用举例4.7.9实例36:内部函数库文件intrins.h中的_cml_()函数应用举例4.7.10实例37:标准函数库文件stdlib.h中的rand()函数应用举例4.7.1l实例38:字符串函数库文件string.h中的strcmp()函数应用举例4.8C语言的编译预处理4.8.1常用预处理命令介绍4.8.2实例39:宏定义应用举例4.8
2023/6/30 19:58:11 56.86MB 单片机 c语言100例
1
共 30 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡