以成都市中心城区人民南路三段为例,进行了实例预测研究。
预测结果为交通拥堵预测的识别率为48%,误判率为16%,结果表明基于速度的拥堵预测模型能够对城市主干道交通状态进行有效的预测分析。
2024/10/10 11:43:44 16.13MB 交通拥堵预测
1
准确了解用户对视频热度的选择(PP)的差异性对丰富的用户画像,提高个性化服务精确度和优化产品提供方收益等方面大有替代益。
目前只有少量的统计学方面的研究,在数据稀疏或者大规模启动的情况下不确定性的正确性。
基于大规模商业在线视频流媒体系统的用户观影数据,此处对用户的视频热度替换进行了多角度刻画分析,着重提出了两个基于协同过滤(CF)的算法来预测用户对视频热度的替代。
具体贡献如下:1)通过空模型假设对比实验,发现并非所有用户都偏好热度高的视频;
大多数用户有较广泛的优选范围,但用户之间2)设计了基于最近邻居的(NNI)和基于矩阵分解的(MFI)用户热度首选预测模型。
实验证明,当数据稀疏度低于48%的时候,用NNI或MFI算法初始化所得的用户热度替代比传统方法统计所得的结果更准确。
越稀疏的情况下,这种优势越明显。
此工作对视频系统中推荐服务设计和用户体验优化具有参考意义。
2024/8/10 16:42:34 224KB 研究论文
1
建立的一个永磁风机的微电网simulink模型,,将风能利用系数波动在0.48左右,能够实现风能最大功率追踪,风速在7m/s和6m/s之间装换。
控制效果很好。
2018/7/3 20:48:41 26KB 最大风能追踪
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡