在MATLAB中,计算三维散乱点云的曲率是一项重要的几何分析任务,尤其是在计算机图形学、图像处理和机器学习等领域。
曲率是衡量表面局部弯曲程度的一个度量,可以帮助我们理解点云数据的形状特征。
曲率的计算通常涉及主曲率、高斯曲率和平均曲率三个关键概念。
主曲率是描述曲面在某一点沿两个正交方向弯曲的程度,通常记为K1和K2,其中K1是最大曲率,K2是最小曲率。
主曲率可以提供关于曲线形状的局部信息,例如,当K1=K2时,表明该点处的曲面是球形;
当K1=0或K2=0时,可能对应于平面区域。
高斯曲率(Gaussian Curvature)是主曲率的乘积,记为K = K1 * K2。
高斯曲率综合了主曲率的信息,能反映曲面上任意点的全局弯曲特性。
如果高斯曲率为正,表明该点在凸形曲面上;
若为负,则在凹形曲面上;
为零时,表示该点位于平面上。
平均曲率(Mean Curvature)是主曲率的算术平均值,H = (K1 + K2) / 2。
它提供了曲面弯曲的平均程度,对于理解物体表面的整体形状变化非常有用。
例如,平均曲率为零的点可能表示曲面的边缘或者尖锐转折。
在MATLAB中,计算这些曲率通常需要以下步骤:1. **数据预处理**:你需要加载散乱点云数据。
这可以通过读取txt文件(如www.pudn.com.txt)或使用特定的数据集来完成。
数据通常包含每个点的XYZ坐标。
2. **邻域搜索**:确定每个点的邻域,通常采用球形邻域或基于距离的邻域。
邻域的选择直接影响曲率计算的精度和稳定性。
3. **拟合曲面**:使用最近邻插值、移动最小二乘法(Moving Least Squares, MLS)或其他方法,将点云数据拟合成一个连续曲面。
在本例中,"demo_MLS"可能是一个实现MLS算法的MATLAB脚本。
4. **计算几何属性**:在拟合的曲面上,计算每个点的曲率。
这涉及到计算曲面的曲率矩阵、主轴和主曲率。
同时,高斯曲率和平均曲率可以通过已知的主曲率直接计算得出。
5. **结果可视化**:你可以使用MATLAB的图形工具,如`scatter3`或`patch`函数,将曲率信息以颜色编码的方式叠加到原始点云上,以直观展示曲率分布。
在实际应用中,曲率计算对于识别物体特征、形状分析和目标检测等任务具有重要价值。
例如,在机器人导航、医学图像分析和3D重建等领域,理解点云数据的几何特性至关重要。
总结来说,MATLAB中的算法通过一系列数学操作和数据处理,可以有效地计算三维散乱点云的主曲率、高斯曲率和平均曲率,从而揭示其内在的几何结构和形状特征。
正确理解和运用这些曲率概念,有助于在相关领域进行更深入的研究和开发。
2025/6/18 16:18:34 130KB
1
腹部的CT图像,可以进行3D重建,效果比较好。
楼主已自测。
特传上来大家分享
2024/7/29 13:27:38 7.38MB CT图像 Dicom格式
1
从一组校准的2D多视图图像中准确地重建3D几何形状是一种积极而有效的方法计算机视觉中具有挑战性的任务。
现有的多视图立体声方法通常在恢复方面表现不佳深凹且突出的结构,并且会遇到一些常见问题,例如收敛速度慢,对初始条件的敏感性以及对内存的高要求。
为了解决这些问题,我们建议广义重投影误差最小化的两阶段优化方法(TwGREM),其中提出了一种广义的重投影误差框架,以将立体和轮廓提示整合到一个统一的能量中功能。
为了使函数最小化,我们首先在3D体积网格上引入凸松弛可以使用变量拆分和Chambolle投影有效解决。
然后,得到的表面是参数化为三角形网格并使用表面演化进行精炼以获得高质量的3D重建。
我们使用几种最先进方法进行的比较实验表明,TwGREM的性能基于3D的重建在准确性和效率方面是最高的,尤其是对于具有光滑的纹理和稀疏的视点
2024/4/19 21:58:52 1.24MB 研究论文
1
可以应用图片进行3d建模,重二维到三维
2017/4/18 14:01:26 8KB 3d重建
1
欧拉公式求长期率的matlab代码RELION代码存储库绘制3D重建的欧拉角分布给定Relion的输出.star文件,您可以经过使用UCSFChimera打开.bild文件来可视化欧拉角。
另外,如果您想为任何欧拉角生成一维直方图,或者为两个特定欧拉角生成二维热图,则可以使用plot_indivEuler_histogram_fromStarFile.py:$Relion/plot_indivEuler_histogram_fromStarFile.pyUsage:plot_indivEuler_histogram_fromStarFile.py--starfile=Options:-h,--helpshowthishelpmessageandexit--starfile=FILERelionstarfile(data.star)--rlnEuler=STRINGNameofRelioneulerangledesignation:AngleRot,AngleTilt,AnglePsi.
2022/10/8 14:13:08 87KB 系统开源
1
單個圖像研究3D形狀建模,並在三個方面對其做出貢獻。
首先,我們介紹了Pix3D,這是一個具有像素級2D-3D對齊的各種圖像形狀對的大規模基準。
Pix3D在形狀相關的任務中有著廣泛的應用,包括重建、檢索、視點估計等。
然而,構建這樣一個大規模的數據集是非常具有挑戰性的;
現有數據集要么僅包含合成數據,要么缺乏2D圖像和3D形狀之間的精確對齊,或者只要少量圖像。
其次,我們通過行為研究校準了3D形狀重建的評估標準,並用它們來客觀、系統地對Pix3D上的尖端重建算法進行基準測試。
第三,我們設計了一個同時執行3D重建和姿態估計的新模型需要安裝下列庫GCC4.8.5CUDA8.0Python3.6.4TensorFlow1.1.0numpy1.14.0skimage0.13.1numba0.36.2scipy1.0.0tqdm4.19.4
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡