本代码是雷达系统设计的matlab仿真代码。
本书系统地讲述了雷达系统分析和设计的全过程,并有一个完整的设计案例贯穿于全书,同时各章分别还有一些小型实例。
本书的主要内容包括:雷达基础导论、雷达检测、雷达波形、雷达模糊函数、脉冲压缩、面杂波与体杂波、动目标显示和杂波抑制、相控阵、目标跟踪、电子对抗、雷达截面积、高分辨率战术合成孔径雷达、信号处理等。
所有MATLAB代码和函数均可从网站获得。
2024/12/11 14:06:27 240KB 雷达 仿真 matlab
1
像素级融合matlab代码,Brovery变换融合也被称为彩色标准变换融合,它是将多光谱波段颜色(红、绿、蓝)归一化,将高分辨率影像与多光谱各波段(通常取三波段)相成完成融合。
融合算法非常简单。
2024/11/9 19:55:18 2KB 像素级融合
1
由于棱镜具有色散不均匀的特点,中阶梯光栅光谱仪的二维谱图在长波波段不可避免地存在相邻衍射级次间相互干扰的情况。
为了克服这一缺点,同时充分利用探测器像面,设计了一种小型分段式的中阶梯光栅光谱仪。
通过对中阶梯光栅和棱镜色散原理的详细分析,确定了二者参数与探测器之间的关系,结合双缝间隔设计方法,采用双狭缝切换的方式,给出分段式中阶梯光栅光谱仪的设计方法。
利用此方法将系统的波段范围165~800nm分为165~230nm和210~800nm两部分,焦距设计为200mm,分别采集双波段的二维谱图。
使用光学设计软件对光学系统进行仿真,结果表明,200nm处的实际光谱分辨率可达0.015nm,满足设计指标的要求。
2024/9/28 18:20:25 8.06MB 衍射 双缝切换 衍射级次 中阶梯光
1
飞秒光梳为精密光谱测量领域带来了革命性的进展,不仅为射频与光频建立了直接的联系,将光谱测量精度提高至17位,而且还可以直接用于光谱测量,产生了一门新的学科--直接光梳光谱学(DFCS)。
在DFCS中,光梳脉冲能量放大和非线性频率变换是不可或缺的手段,但是传统的脉冲放大、高次谐波产生过程会导致光梳的频率分辨率下降,精度和能量难以兼得。
本文报道了激光光谱学中的重大进展--拉姆塞光梳光谱学,该技术结合了两个诺贝尔奖概念,可实现光谱的高准确度、高分辨率测量。
2024/9/22 0:44:24 1.58MB 光谱学 拉姆塞 光梳 直接光梳
1
cubecraft官方高分辨率纸盒人图纸360套,包含多个经典电影和动漫主角。
这是第二部分
2024/9/4 10:34:07 45.4MB cubeecraft 官方 高分辨率 纸盒人图纸
1
新的激光技术,脉冲式和连续式,使其有可能看到无多普勒加宽的光谱,能标定能级和提高灵敏度,现在正在开辟新的应用。
2024/8/4 12:54:39 6.16MB
1
MaxonCINEMA4DStudioR22是由德国Maxon设计公司开发的一款高效、快速、稳定和易用的专业三维设计工具,包含GPU渲染器Prorender、生产级实时视窗着色、超强破碎、场景重建等诸多新功能。
MaxonCINEMA4DStudioR22提供了优秀工具和诸多提升,你可立即将其投入工作并一瞥未来的根基。
设计师因其快速、简单、易用的工作流程,以及坚如磐石的稳定性而选择MaxonCINEMA4DStudioR22,同时22可以让你的工作流程更加快速和可靠,新特性也会让你的视野变得更加开阔。
MaxonCINEMA4DStudioR19中文版MaxonCINEMA4DStudioR22中文版今日的工具,明日的技术Cinema4DRelease22提供了优秀工具和诸多提升,你可立即将其投入工作并一瞥未来的根基。
设计师因其快速、简单的工作流程,以及坚如磐石的稳定性而选择Cinema4D,同时Release19可以让你的工作流程更加快速和可靠,新特性也会让你的视野变得更加开阔。
工作流程Cinema4D快速简单的工作流程总是让加快设计速度变得简单。
Release19的准渲染视窗和其他极佳的工作流程改进,会让你比以往更快地准备创意稿给客户审批。
视窗新基于物理的视窗具备实时反射和景深你所看到的景深和屏幕空间反射是实时的渲染结果,可以更简单精准的对地面、灯光和反射进行可视化的设置。
Release19除了屏幕空间环境吸收和实时置换以外,还添加了基于屏幕空间的反射和OpenGL景深效果。
开启OpenGL观察看起来很好,你可以用它来输出新支持的原生MP4作为预览渲染,直接给客户审批。
LOD(细节级别)对象使用新的LOD对象可最大程度提升视窗或渲染速度,创建新类型的动画或准备优化游戏资源。
你可以根据屏幕大小、摄像机距离和其他因素自动简化对象和层级结构。
直观的新界面元素让定义和管理LOD设置更简单,LOD能够通过导出FBX用于市面上主流的游戏引擎。
新媒体核心作为我们的核心现代化工作的一部分,Cinema4D支持图像、视频和音频的格式已经完全重写了,速度和内存效率得到了增强。
除了QuickTime外Cinema4D现在本地支持MP4,比以往更容易提供预览渲染、视频纹理或运动跟踪的画面。
所有导入和导出的格式都比以往更加全面且功能强大。
交换格式更新通过FBX和Alembic格式导出LOD和选择对象。
Alembic文件新支持的次帧插值可进行Re-time并渲染准确的运动模糊。
新功能高亮显示通过高亮显示新功能可快速识别R19、R18的新特性或特定的教学。
分裂更加简单泰森分裂可以简单的进行程序化分裂对象–在Release19你可以控制动力学与连接器,将碎片粘合在一起,添加裂缝和更多的细节。
球型摄像机渲染”虚拟“现实R19提供了渲染和体验渲染的新方法–利用强大的GPU进行快速、好看的OpenGL预览,或使用ProRender进行基于物理的最终高质量渲染。
准备加入虚拟现实革命?使用R19的球形相机轻松渲染360°VR视频。
释放你显卡的力量来创建物理上精确的最终渲染。
AMD的RadeonProRender技术无缝集成到R19中,支持Cinema4D的标准材质、灯光和摄像机。
无论你是在最新的Mac系统中使用强大的AMD芯片,还是在Windows中使用NVIDIA和AMD显卡,你都可以享受跨平台、深度集成的解决方案,具有快速、直观的工作流程。
交互式渲染将ProRender附加到任何视窗,并像其他视窗一样使用它。
你可以在重新排列物体、调整相机、调整材质和照明时获得即时反馈。
进程式渲染整个图像,或在高分辨率渲染时使用区块式渲染以更好地进行内存管理。
ProRender可完全使用你系统中所有的显卡,无论你是使用具有多张Radeon的MacPro,还是具有AMD或NVIDA卡的Windows系统。
深入集成使用Cinema4D的材质、灯光和摄像机。
”萤火虫“滤镜消除路径追踪算法中常见的坏像素。
R20中的ProRender是产品可视化和其他类型渲染的绝佳选择,但当然这只是管中窥豹,ProRender最终将提供更多功能,并更深入地集成在将来的Cinema4D版本中。
PBR工作流程新PBR材质和灯光选项包含了基于物理渲染工作流的理想默认值。
紧跟现今趋势,为YouTube、Facebook、Oculus或Vive渲染立体360°VR视频。
新媒体核心所有的格式都会在新媒体核心中导入和渲染使用GIFs和MP4s作为纹理直接渲染为MP4、DDS和增强OpenEXR。
2024/7/15 22:43:35 348.3MB 三维建模渲染工具
1
通过高分辨率电子束光刻方法制备了不同形状的三层复合材料纳米颗粒,研究了这种纳米颗粒的形状变化对消光特性的影响。
测试结果表明,当入射波偏振方向平行于短轴时,随着长宽比的增大,共振峰位置发生“蓝移”;
当光源偏振方向平行于长轴时,随着长宽比的增大,共振峰位置发生“红移”。
还用时域有限差分算法以及表面等离波子的Lorentz模型对纳米颗粒的消光特性进行数值计算,所得的消光频谱曲线、共振峰位置变化趋势与实验基本一致。
此外,还研究了主体材料层厚度对消光特性的影响,发现其厚度在20~90nm变化时,共振峰发生3~115nm的“蓝移”。
1
HR2000高分辨率微型光纤光谱仪是一种小型模块化的光谱仪,可提供光学分辨率为0.035nm(FWHM)。
HR2000特别适用于激光和LEDS等波
2024/5/13 13:41:17 293KB LabVIEW
1
本文介绍了一种基于小波变换的高分辨率频谱分析方法,该方法对信号频谱分辨率有明显的改善效果,尤其是在短数据采样点上,仍然具有较高的频谱分析效果,适合于快速变化信号的频谱分析。
2024/5/11 21:08:40 97KB 小波变换 高分辨率 信号频谱
1
共 61 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡