针对高光谱图像特征利用不足和训练样本难以获取的问题,提出了一种具有多特征和改进堆栈稀疏自编码网络的高光谱图像分类算法。
采用流形学习获得高光谱图像的低维数据结构,并提取高光谱图像的光谱特征、具有空间信息的局部二值模式(LBP)特征及拓展多属性剖面(EMAP)特征。
利用主动学习查询特征性强的未标记样本并将其标记,利用融合空谱联合信息的样本训练堆栈主动稀疏自编码神经网络并用Softmax分类器对其分类。
Indianpines数据集的总体分类精度达到98.14%,PaviaU数据集总体分类精度达到97.24%。
实验结果表明,该算法分类精度高,边界点分类效果更好。
2025/6/29 4:53:23 12.88MB 图像处理 高光谱图 多特征 流形学习
1
苹果高光谱图像数据集用于纯苹果和施肥苹果的高光谱数据集关于数据集用于测量所用化学物质水平的纯苹果和施肥苹果的高光谱数据集。
数据集由各种苹果的高光谱图像组成。
分为三大类:1.“新鲜”-从市场直接购买的苹果图像2."低浓度”-苹果浸入低浓度杀真菌剂/杀虫剂溶液即1克或1毫升肥料兑1升水)的图像,以及3.高浓度“_苹果浸入低浓度杀真菌剂/杀虫剂溶液(即3克或3毫升肥料兑1升水)的图像,以及默认情况下,高光谱图像保存为.bil格式。
此数据集以.tif格式给出。
整个数据集被分类为三个folders.1Apple_Samples,2.Fungicide_Apple3.lnsecticide_AppleApple_Samples文件夹由两个文件夹组成:monostar和nativo。
“Monostar”被进一步分为四个文件夹,总共有207张图片。
"Nativo"由=个文件夹组成,总共73张图片。
杀菌剂苹果由162张图片组成,分为三类,即新鲜苹果、低浓度溶液浸泡的苹果和高浓度溶液浸泡的苹果。
本试验所用的杀菌剂是NATIVO。
同样,杀虫剂苹果由175张图片组成,也分为三类
2025/5/18 9:08:56 761.24MB 数据集
1
以新疆红富士苹果为研究对象,探讨应用高光谱图像技术和最小外接矩形法预测其大小的研究方法。
提取苹果高光谱图像中可见红色区域受色度影响较小的713nm以及近红外区域793和852nm的3个波长图像,做双波段比运算处理。
比较所得双波段比图像可知,852/713双波段比图像中背景和前景灰度对比度最大。
对该图像做阈值分割以及形态闭运算去除果梗区域,使用8邻接边界跟踪法得到二值图像的轮廓坐标序列,采用最小外接矩形法求苹果的大小,与实测值建立回归方程。
结果表明,基于高光谱图像技术采用波段比算法,结合最小外接矩形法,能够有效地检测苹果大小,预测值与实际值最大绝对误差为3.06mm,均方根误差为1.21mm。
2025/4/29 18:04:53 359KB 最小外接矩形
1
用于检测机载RGB,高光谱和LIDAR点云中单个树的多传感器基准数据集树木的个体检测是林业和生态学的中心任务。
很少有论文分析在广泛的地理区域内提出的方法。
NeonTreeEvaluation数据集是在国家生态观测网络(NEON)中22个站点的RGB图像上绘制的一组边界框。
每个站点覆盖不同的森林类型(例如)。
该数据集是第一个在多种生态系统中具有一致注解的数据集,用于共同注册的RGB,LiDAR和高光谱图像。
评估图像包含在此仓库中的/evaluation文件夹下。
注释文件(.xml)包含在此仓库中的/annotations/下制作人:BenWeinstein-佛罗里达大学。
如何根据基准进行评估?我们构建了一个R包,以方便评估并与基准评估数据进行交互。
图像是如何注释的?每个可见的树都进行了注释,以创建一个包围垂直对象所有部分的边界框。
倒下的树木没有注释。
2024/10/9 21:49:49 2GB Python
1
高光谱资料高光谱资料高光谱资料高光谱资料高光谱资料高光谱资料
2024/10/9 21:48:36 4.44MB 图像处理
1
在遥感领域,数据集是研究和开发的关键资源,它们为模型训练、验证和测试提供了必要的数据。
"高光谱和LiDAR多模态遥感图像分类数据集"是这样一种专门针对遥感图像处理的宝贵资源,它结合了两种不同类型的数据——高光谱图像和LiDAR(LightDetectionandRanging)数据,以实现更精确的图像分类。
高光谱图像,也称为光谱成像,是一种捕捉和记录物体反射或发射的光谱信息的技术。
这种技术能够提供数百个连续的光谱波段,每个波段对应一个窄的电磁谱段。
通过分析这些波段,我们可以获取物体的详细化学和物理特性,例如植被健康、土壤类型、水体污染等,这对环境监测、城市规划、农业管理等有着重要的应用。
LiDAR则是一种主动遥感技术,它通过向地面发射激光脉冲并测量回波时间来计算目标的距离。
LiDAR数据可以生成高精度的地形模型,包括地表特征如建筑物、树木和地形起伏。
此外,LiDAR还能穿透植被,揭示地表覆盖下的特征,如地基和地下结构。
这个数据集包含了三个不同的地区:Houston2013、Trento和MUUFL。
每个地区可能对应不同的地理环境和应用场景,这为研究者提供了多样性的数据,以便他们在不同条件和场景下测试和比较分类算法的效果。
数据集的分类任务通常涉及识别图像中的各种地物类别,如建筑、水体、植被、道路等。
多模态数据结合可以显著提升分类的准确性,因为高光谱数据提供了丰富的光谱信息,而LiDAR数据则提供了高度精确的空间信息。
将这两者结合起来,可以形成一个强大的特征空间,帮助区分相似的地物类别,减少分类错误。
在实际应用中,这个数据集可以用于训练深度学习或机器学习模型,比如卷积神经网络(CNN)。
通过在这样的多模态数据上训练,模型能够学习到如何综合解析光谱和空间信息,从而提高对遥感图像的分类能力。
对于研究人员和开发者来说,这个数据集提供了理想的平台,用于开发新的图像分析技术,改进现有算法,并推动遥感图像处理领域的创新。
"高光谱和LiDAR多模态遥感图像分类数据集"是一个涵盖了多种地理环境和两种互补遥感技术的宝贵资源,对于理解地物特性、提升遥感图像分类精度以及推动遥感技术的发展具有重大价值。
通过深入研究和利用这个数据集,我们可以期待在未来实现更加智能化和精确化的地球表面监测。
2024/10/9 21:43:17 185.02MB 数据集
1
本次数据集是用于高光谱图像分类使用的indian影像数据集,该图像数据集是采用可见光与红外机载式成像光谱仪器(AVIRIS)获取的来自于印第安纳州西北部IndianPines农业试验场的高光谱图像。
用于遥感方向的研究使用。
2024/10/1 15:26:11 5.71MB 高光谱数据集
1
主要介绍用ENVI如何实现地物识别,以求在此过程中更好地熟悉和理解高光谱遥感图像的处理方法和步骤。
本章选用的实验数据是一幅经过校准的AVIRIS图像,处理的结果用于地质学应用,这主要是考虑到,到目前为止地质学研究仍然是高光谱遥感的主要应用领域之一。
最后,我对一幅相比之下空间分辨率更高的用于军事的高光谱图像进行了部分改进的分析操作,以便比较分类效果。
2024/9/20 12:52:57 2.28MB ENVI 地物识别
1
资源来源于DoveJay,由于原程序不能显示图像,因此做了修改。
需要不修改的请到http://download.csdn.net/download/dovejay/9820610下载
2024/8/19 3:36:54 9.03MB 高光谱 matlab 读取
1
资源包括99.9%的常用的实验高光谱图像数据,全部是.mat文件,到手即用(数据集和标签都有,部分还有的图像)数据集包括:Indianpines,paviauniversity,paviacenter,botswana,Houston_2013,Houston_2018,KSC,Salinas,xuzhou,xiongan,由于数据量过大,本资源提供百度云链接,请自行下载
2024/5/25 17:30:41 237B HSI数据集 Indianpines Houston Salinas
1
共 33 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡