这是一篇很好的基于MATLAB的图像处理的课程设计的论文,很适合基础不高的朋友,每个过程讲解的都很详细,而且后面配有整个设计完整的代码,我就是参照这篇论文写出自己的,感觉很有价值,希望对有需要的朋友有所帮助。
2025/8/17 18:21:03 1.77MB MATLAB 数字图像处理 论文
1
SysML,SystemModelingLanguage,系统建模语言,这抽象的名字就让人望而生畏,九种不同的模型图令初学者手足无措,学习资料的匮乏、说明书的枯燥,令许多想学习的人把SysML拒之门外。
而国外的NASA实验室、洛克希德.马丁等多家知名单位早已采用SysML进行产品设计,巴西海军甚至在某项目的招标文件中,明确提出竞标单位要使用SysML描述解决方案。
SysML究竟是什么,有何过人之处?就让我为您揭开SysML的神秘面纱。
现阶段的装备都是高复杂性大系统,装备设计制造越来越复杂,往往涉及多学科领域,如机械、电子、控制、传感器等等。
另一方面,一个项目往往由多个团队组成,不同团队和人员的
2025/8/17 18:02:07 155KB SysML简介
1
直接数字合成(DDS)是一种重要的频率合成技术,具有分辨率高、频率变换快等优点,在通信等领域有着广泛的应用前景。
本系统采用直接频率信号合成器(DDS)AD9850与STC89S52单片机相结合的方法,以AD9850为频率合成器,以单片机为进程控制和任务调度的核心,设计了一个信号发生器。
实现了输出频率在10HZ~20MHZ范围可调,输出信号频率稳定度优于10-3的正弦波、方波和三角波信号,输出信号无明显失真。
本文给出了AD9850芯片和STC89S52单片机的硬件组成原理框图、单元电路分析及软件流程,并通过严格的实测数据分析圆满完成了本设计任务。
2025/8/17 13:14:14 269KB DDS 单片机 信号发生器
1
数据结构课程设计霍夫曼编码实验报告,包含源码基本要求:一个完整的系统应具有以下功能:(1)I:初始化(Initialization)。
从终端读入字符集大小n及n个字符和m个权值,建立哈夫曼树,并将它存于文件hfmtree中。
(2)C:编码(Coding)。
利用已建好的哈夫曼树(如不在内存,则从文件hfmtree中读入),对文件tobetrans中的正文进行编码,然后将结果存入文件codefile中。
(3)D:解码(Decoding)。
利用已建好的哈夫曼树将文件codefile中的代码进行译码,结果存入文件textfile中。
(4)P:打印代码文件(Print)。
将文件codefile以紧凑格式显示在终端上,每行50个代码。
同时,将此字符形式的编码文件写入文件codeprint中。
(5)T:打印哈夫曼树(Treeprinting)。
将已在内存中的哈夫曼树以直观的方式(树或凹入表形式)显示在终端上,同时将此字符形式的哈夫曼树写入文件treeprint中。
###霍夫曼编码器知识点解析####一、霍夫曼编码基础概念**霍夫曼编码**是一种广泛应用于数据压缩领域的编码方法。
它采用了一种变长编码技术,使得出现频率高的字符可以用较短的编码表示,而出现频率低的字符则使用较长的编码表示。
这样做的好处是可以有效地减少数据的整体存储空间或传输所需的时间。
####二、霍夫曼树的构建霍夫曼树的构建是霍夫曼编码的基础。
构建过程大致分为以下几个步骤:1.**初始化**:首先读取字符集大小`n`及`n`个字符和它们的权重(出现次数),通常权重越大的字符出现的频率越高。
这部分操作可以通过用户输入或者从文件中读取完成。
2.**创建节点**:对于每一个字符及其权重,创建一个节点,该节点包含字符信息和权重信息。
这些节点可以被看作是一个优先队列,其中优先级由权重决定,权重越小的节点优先级越高。
3.**构造霍夫曼树**:不断地从优先队列中选取权重最小的两个节点作为新的节点的左右子树,并且新节点的权重等于其两个子节点的权重之和。
重复这一过程,直到所有的节点都合并成一个根节点为止,此时便得到了一棵完整的霍夫曼树。
4.**编码赋值**:从根节点开始,按照左子树为0、右子树为1的原则为每个叶子节点赋值编码。
叶子节点代表的是原始的字符集合,这样每个字符都有了一个与之对应的编码。
####三、编码与解码-**编码**:对于给定的文本,通过查找霍夫曼树中对应字符的路径,获取其霍夫曼编码,并将其替换为原文本中的字符,从而得到编码后的文件。
编码后的文件通常会比原始文件占用更少的空间。
-**解码**:解码过程则是编码过程的逆向操作。
根据霍夫曼树,从编码文件中读取编码序列,沿着霍夫曼树逐位判断,当遇到叶子节点时,即可确定对应的字符,从而恢复出原始文本。
####四、打印功能-**打印编码文件**:将编码后的文件内容以紧凑格式输出,每行50个编码。
此外,还需要将这些编码保存到另一个文件中,便于后续查看或处理。
-**打印霍夫曼树**:将霍夫曼树以直观的形式(例如树形结构或凹入表格形式)展示出来。
同时,将树的图形化表示保存到文件中,方便用户理解霍夫曼树的具体结构。
####五、实验环境搭建与运行**硬件环境**:实验中提到了具体的硬件配置,比如IntelCorei5-4258UCPU,这意味着实验是在一台具有足够计算能力的计算机上进行的。
**软件环境**:实验使用了MicrosoftVisualC++6.0进行编程。
这是一个广泛使用的C++集成开发环境(IDE),适合初学者和专业人士使用。
####六、实验过程与调试-**实验过程**:根据上述流程,可以实现霍夫曼编码器的基本功能。
在编写代码的过程中,需要注意细节处理,确保每个功能模块都能正确执行。
-**调试**:通过编写测试文档`tobetrans`,并运行程序,检查编码、解码等功能是否能够正常工作。
可以使用简单的测试用例来进行初步验证,如含有全部英文字母的文档等。
####七、实现代码示例实验报告中虽然只给出了部分代码框架,但可以想象实际的代码应该包含了霍夫曼树节点定义、霍夫曼树构建函数、编码函数、解码函数、打印函数等关键部分。
具体的实现逻辑需要结合上述理论知识进行编写。
通过上述解析,我们可以了解到霍夫曼编码器的设计思路和技术要点,这对于深入理解和应用霍夫曼编码具有重要的意义。
2025/8/17 10:34:16 78KB 霍夫曼编码
1
PowerDVD13.0.3105.58极致蓝光版(红蓝)PowerDVD功能特点:1、支持CPU/GPU硬件加速及无失真HD高传真音效技术;
2、内置DLNA服务器,轻松无线连接手机等移动设备;
3、全能播放任何视频格式都能播包含FLV、MKV、RM、RMVB(需预先于电脑中完成RealPlayer安装)、DivX、3G2、3GP…4、支持CPU/GPU硬件加速及无失真HD高传真音效技术;
5、支持播放蓝光Blu-ray3D电影;
支持视频文件2D转换3D。
最新版的PowerDVD号称拥有“全新强化的操作与播放体验”,让用户“以全新的方式探索更多媒体娱乐”
2025/8/16 8:33:25 125.8MB PowerDVD13.0.31
1
针对高光谱图像空间分辨率不足导致异常检测虚警率过高的问题,提出了一种利用主成分分析(PCA)和IHS变换融合以降低虚警率的算法。
首先对低分辨率高光谱图像进行PCA变换,提取3个主成分;
然后对这3个主成分和高分辨率图像分别进行IHS变换,得到各自的强度分量,把高光谱数据的强度分量替换成高分辨率图像的强度分量;
再运用IHS变换的可逆性,将新的强度分量与原色度分量和饱和度分量进行IHS逆变换,得到空间信息增强的高光谱图像数据;
最后使用KRX算法对空间信息增强的高光谱图像数据进行异常检测。
实验结果表明,本文算法的虚警率与KRX算法相比有很大的降低,取得了良好的检测效果。
1
程序可用,自带训练和测试数据集,每个模块是单独编,可读性强,利用率高。
2025/8/15 1:47:10 41KB 算法 SVM GA
1
摘要本论文主要介绍了JPEG的编码和解码过程。
该程序的编码部分能把一张BMP格式的图象进行JEPG编码,压缩成以二进制形式保存的文件;
通过相应的解码程序又可以把图象解压缩出来。
在图象传送过程中,我们经常采用JPEG格式对静态图象进行编码。
JPEG基本系统是一种有损编码,无法完全恢复出原图象,信息有一定的丢失,称为有损压缩。
尽管我们希望能够无损压缩,但是通常有损压缩的压缩比(即原图象占的字节数与压缩后图象占的字节数之比,压缩比越大,说明压缩效率越高)比无损压缩的高。
JPEG编码先把图象色彩RBG变成亮度Y和色度Cr、Cb,它利用人的视觉对色度不敏感的特点,减少一部分色度数据,以达到压缩。
JPEG采取多种编码方式,包含有行程编码(RunLengthCoding)和哈夫曼(Huffman)编码,有很高的压缩比。
在编码前,先对数据进行分块,离散余弦变换(DCT)及量化,保留能量大的低频信号,丢弃高频信号以达到压缩。
解码时,进行熵解码,反量化,反离散余弦变换(IDCT)。
关键字:JPEG;有损压缩;行程编码;哈夫曼编码
2025/8/13 9:50:03 142KB Matlab 图像压缩 编码,DCT
1
STM32F407是意法半导体(STMicroelectronics)推出的一款基于ARMCortex-M4内核的微控制器,广泛应用于工业控制、物联网设备、自动化系统等领域。
485MODBUS是工业通信协议的一种,常用于设备间的串行通信,具有良好的抗干扰性和远距离传输能力。
在本实验中,我们将探讨如何利用STM32F407实现485MODBUS通信。
1.**STM32F407核心特性**STM32F407集成了高性能的Cortex-M4处理器,具备浮点运算单元(FPU),工作频率高达180MHz,内存配置包括大容量闪存和SRAM,以及丰富的外设接口如I/O端口、定时器、ADC、SPI、I2C、USART等,非常适合实时性和计算性能要求较高的应用。
2.**485通信协议**485通信是RS-485标准下的物理层通信方式,采用差分信号传输,允许在多点网络中进行全双工或半双工通信,最大传输距离可达1200米,适合长距离、噪声环境下的数据传输。
MODBUS是一种基于485通信的通用协议,主要用于设备间的数据交换,支持ASCII和RTU两种模式,其中RTU模式效率更高,适用于大多数工业应用。
3.**MODBUS协议详解**MODBUS协议定义了数据组织和传输格式,包括地址编码、功能码、数据域和校验码等。
地址编码用于指定发送和接收设备,功能码指示要执行的操作,如读取或写入寄存器,数据域包含实际传输的数据,校验码用于检查通信错误。
4.**STM32F407与485MODBUS的实现**-**硬件配置**:STM32F407通常通过UART接口连接到485收发器,如MAX485,收发器负责将TTL电平转换为485电平,实现长距离传输。
-**软件实现**:使用STM32CubeMX配置UART参数,如波特率、数据位、停止位、校验位等。
编写驱动代码来初始化UART和485收发器,设置中断处理函数处理数据收发。
-**MODBUS协议栈**:编写MODBUS协议解析代码,根据接收到的功能码执行相应操作,如读取或写入寄存器。
这需要理解并实现MODBUS协议中的各种功能码。
5.**实验步骤**实验26485通信实验可能包括以下步骤:-硬件连接:连接STM32开发板和485收发器,确保正确接线。
-配置STM32:使用STM32CubeMX配置UART接口和时钟,生成初始化代码。
-编写通信代码:实现MODBUS协议的解析和响应,以及数据的发送和接收。
-测试验证:通过另一台支持MODBUS的设备与STM32进行通信,测试读写功能,确保数据正确传输。
6.**注意事项**在进行485MODBUS通信时,需注意以下几点:-差分信号线A和B需要正确连接,避免反接。
-设备之间需要保持一致的波特率和其他通信参数。
-为了避免信号冲突,需要正确设置485收发器的使能信号,确保在发送时才切换到发送模式。
-在多设备网络中,需避免地址冲突,确保每个设备有唯一的MODBUS地址。
这个实验为学习者提供了一个很好的平台,通过实践了解STM32F407与485MODBUS通信的工作原理和实现细节,对于提升嵌入式系统开发能力非常有帮助。
2025/8/13 9:25:27 unknown 485通讯
1
arcgisforandroid空间查询点击某点,选中该点所在区域,然后高亮显示选中的区域
2025/8/13 3:17:49 33.12MB arcgis for android 空间查询
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡