《随机过程教程讲义》是一本系统介绍随机过程理论及其应用的教学资料,涵盖基础概念、模型构建及实际案例分析,适用于科研与教学。


### 随机过程讲义知识点解析

#### 马尔可夫链的基本概念与性质

马尔可夫链是一种重要的随机过程模型,其特点在于系统在任一时刻的状态仅依赖于前一个状态而与其他历史无关。
这种特性使得马尔可夫链被广泛应用于统计学、计算机科学、物理学和工程学等领域。


**一步转移概率矩阵与状态关系**

讲义中通过具体例子展示了如何构建一步转移概率矩阵,并分析了各个状态之间的相互联系。
例如,对于一个包含{0,1,2,3}的状态集的马尔可夫链,其一步转移概率矩阵如下所示:

[
P = begin{pmatrix}
1/2 & 1/2 & 0 & 0 \1/4 & 1/4 & 1/4 & 1/4 \0 & 0 & 0 & 1
end{pmatrix}
]

通过分析矩阵中的元素,可以得知状态0和状态1之间存在互达性(即两者间可相互转换),而从状态2可以到达其他所有状态,但一旦进入状态3,则永远停留在那里。
因此,状态3是一个吸收态。


#### 遍历性与平稳分布

遍历性是马尔可夫链的重要性质之一,表示在长时间运行后每个状态的访问频率趋于稳定值,显示出系统的长期行为模式。
而平稳分布则描述了这一稳定的概率分布情况。


讲义中讨论了两种不同的一步转移矩阵,并分析它们是否具有遍历性。
第一种情况下该马尔可夫链具备遍历性并计算出了其平稳分布(pi),满足条件(pi P = pi);
而在第二种情形下,由于n步转移矩阵显示随时间变化而不收敛的特性,因此不具备遍历性。


#### 泊松过程的定义等价性

泊松过程是一种关键随机模型,在描述独立且发生率恒定事件的时间间隔方面具有独特性质。
讲义中提出了两种不同的泊松过程定义,并通过Kolmogorov微分方程验证了这两种定义的一致性。


具体而言,通过对短时间内的行为分析导出了泊松过程的微分方程,该推导基于两个基本特性:事件的发生是独立且在短时间内发生率恒定。
这不仅证明了两种定义之间的等价关系,也加深了对泊松过程内在机制的理解。


这份随机过程讲义深入浅出地讲解了马尔可夫链和泊松过程的核心概念及其应用,并通过实例分析帮助读者理解这些模型的数学基础与实际意义,在学术研究及工业应用中都具有重要价值。
2025/9/18 21:33:05 1.41MB 讲义基础,提高,升华
1
针对智能水下机器人(AUV)软件故障修复过程中存在的修复代价过高和系统环境只有部分可观察的问题,提出了一种基于微重启技术和部分客观马尔可夫决策(POMDP)模型的AUV软件故障修复方法。
该方法结合AUV软件系统分层结构特点,构建了基于微重启的三层重启结构,便于细粒度的自修复微重启策略的实施;并依据部分可观马尔可夫决策过程理论,给出AUV软件自修复POMDP模型,同时采用基于点的值迭代(PBVI)算法求解生成修复策略,以最小化累积修复代价为目标,使系统在部分可观环境下能够以较低的修复代价执行修复动作。
仿真实验结果表明,基于微重启技术和POMDP模型的AUV软件故障修复方法能够解决由软件老化及系统调用引起的AUV软件故障,同与两层微重启策略和三层微重启固定策略相比,该方法在累积故障修复时间和运行稳定性上明显更优。
2025/7/11 11:30:10 810KB POMDP
1
具有广义未知扰动的马尔可夫跳跃线性系统的最小上界滤波器
2025/6/23 0:08:08 783KB 研究论文
1
本书全面介绍了统计自然语言处理的基本概念、理论方法和最新研究进展,内容包括形式语言与自动机及其在自然语言处理中的应用、语言模型、隐马尔可夫模型、语料库技术、汉语自动分词与词性标注、句法分析、词义消歧、篇章分析、统计机器翻译、语音翻译、文本分类、信息检索与问答系统、自动文摘和信息抽取、口语信息处理与人机对话系统等,既有对基础知识和理论模型的介绍,也有对相关问题的研究背景、实现方法和技术现状的详细阐述。
2025/5/21 7:49:40 16.87MB 语言处理
1
[免资源分]关于马尔可夫决策过程很全面的资料
2025/4/29 7:01:57 13.98MB 马尔可夫 决策
1
以建立维吾尔语连续音素识别基础平台为目标,在HTK(基于隐马尔可夫模型的工具箱)的基础上,首次研究了其语言相关环节的几项关键技术;结合维吾尔语的语言特征,完成了用于语言模型建立和语音语料库建设的维吾尔语基础文本设计;根据具体技术指标,录制了较大规模语音语料库;确定音素作为基元,训练了维吾尔语声学模型;在基于字母的N-gram语言模型下,得出了从语音句子向字母序列句子的识别结果;统计了维吾尔语32个音素的识别率,给出了容易混淆的音素及其根源分析,为进一步提高识别率奠定了基础。
1
马尔可夫跳跃线性系统的故障检测
2025/1/16 7:45:49 1.02MB 研究论文
1
带有随机系数矩阵的马尔可夫跳跃线性系统的线性最小均方误差估计
2024/12/23 1:10:09 1.16MB 研究论文
1
seqHMM:分类序列的多变量和多通道离散隐马尔可夫模型
2024/11/5 13:52:54 2.03MB hmm r time-series em-algorithm
1
基于隐马尔可夫随机场和期望最大化的图像分割方法,属于统计机器学习范畴,分割效果较好。
2024/10/16 12:32:02 814KB 随机场 图像分割
1
共 67 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡