为了提高风电功率的预测精度,研究了一种基于粒子滤波(PF)与径向基函数(RBF)神经网络相结合的风电功率预测方法。
使用PF算法对历史风速数据进行滤波处理,将处理后的风速数据结合风向、温度的历史数据,归一化后构成风电功率预测模型的新的输入数据;
利用处理后的新的输入数据和输出数据,建立PF-RBF神经网络预测模型,预测风电场的输出功率。
仿真结果表明,使用该预测模型进行风电功率预测,预测精度有一定的提高,连续120h功率预测的平均绝对百分误差达到8.04%,均方根误差达到10.67%
2025/3/2 11:19:56 327KB 粒子滤波 RBF
1
根据百度百科,“风”是“跟地面大致平行的空气流动,是由于冷热气压分布不均匀而产生的空气流动现象”。
风能是一种可再生、清洁的能源,风力发电是最具大规模开发技术经济条件的非水电再生能源。
现今风力发电主要利用的是近地风能。
2023/12/1 0:47:45 318KB 风电功率,预测模型
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡