自己开发的风资源分析工具包WindAnalysis-WindAnalysis1-V1.4.1.zip本帖最后由He_Challen于2017-9-614:40编辑由于工作的原因,今年项目开始转型风电项目,在慢慢上手的过程中发现,风电所涉及的软件清一色北欧的,好不好用只有用了才知道。
因为仅是为前期风电开发做技术分析,老外的软件一个是不容易上手,二是操作复杂。
随下决心自己开发一套专门用于项目前期的风资源分析工具包。
就这样开始而一发不可收拾,从最开始的结构搭建、输出设计便沉迷此中两个月,推出的前三个版本都不太稳定,要么是兼容不好,要么是数据处理的时逻辑顺序有问题,总之在最初的三个版本在大量项目的测风数据的测试下暴漏出一堆又一堆的BUG。
说实话,中途曾想过放弃,一个人孤军奋战实在是太孤独难耐了,多年工作环境造就的内心还是比较强大的,最终还是坚持了下来。
在飞机上、动车上、出差的酒店里、办公桌前开始了一遍又一遍的调试修改,度过了一个又一个难免的夜晚。
最终完成的兼容性和稳定性都可靠的V.1.4.1版本,经反复测试没有问题后,将这个版本作为目前能完成的最终的版本发出来供同行们使用,方便工作和分析。
下面对工具包中的WindAnalysis1和WindAnalysis2的功能做个介绍,过一阵闲了编个教程发出来供大家使用。
WindAnalysis1工具包能够对获取的整个测风数据构建dateset结构体,根据时间序列进行综合整理分析,通过运行可以获得如下分析结果:a.不同高度风速、风向、温度、压强的时间序列分布图;
风速、风向、温度、压强.jpgb.整个测风数据质量判断,及质量分析图;
测风数据质量评估.jpgc.不同高度湍流强度按照风速的分布、各风速对应的湍流强度与其平均湍流强度的分布图;
湍流分布.jpgd.不同高度月平均风速分布图;
月平均风速.jpge.不同高度日平均风速分布图;
日平均风速.jpgf.不同高度风速频率分布直方图;
风频分布.jpgg.不同高度风速风向玫瑰图;
风向、风能玫瑰图.jpgh.风切变拟合和计算;
风切变拟合.jpgi.风切变系数随月分布图;
月风切变.jpgWindAnalysis2为针对特定高度H处的风资源进行详细分析,包括:a.测风时间序列上风速、湍流偏离测风周期内平均值的偏离程度;
风速、湍流时间序列分布.jpgb.风速的威布尔分布拟合和参数计算;
威布尔分布.jpgc.威布尔分布拟合的误差和相关系数R2的计算分析;
拟合误差分析.jpgd.风切变拟合和切边系数计算;
风切变拟合.jpge.指定轮毂高度处的平均风速推算及威布尔分布拟合;
轮毂高度处威布尔分布.jpgf.根据选型风机的参数,绘制功率曲线和推力系数曲线;
功率特性曲线.jpg不仅限于以上figure图文件的生成,还能够估算出指定轮毂高度hub(hub>H)测风塔处的发电量,在CommandWindow窗口中输出计算结果,作为风资源分析的参考。
计算结果.pngWindAnalysis风数据分析工具包教程-V1.4.pdfWindAnalysis1-V1.4.1.zipWindAnalysis2-V1.4.1.zip-------------------------------------------------------------------
2025/5/1 1:47:33 1.38MB matlab
1
双馈风电机组低电压穿越,能实现不同电压跌落情况下的低电压穿越,保护风电机组。
2025/3/31 9:33:32 96KB 风电机组
1
【新能源微电网】新能源微电网是由分布式电源、储能设备、能量转换装置等组成的微型发配电系统,能够在独立或并网状态下运行,具有自我控制、保护和管理能力。
它结合了新能源发电,如太阳能和风能,以提高能源利用率,尤其在偏远地区提供电力供应。
然而,新能源的不稳定性给微电网的运行带来了挑战,如发电量预测和电网管理的困难。
【人工智能神经网络】人工神经网络是人工智能的核心组成部分,模拟生物神经网络结构,用于解决复杂问题,如信息处理和学习。
在新能源微电网领域,神经网络主要用于处理非线性和复杂的预测任务,如风力发电量和电力负荷的预测。
主要的神经网络分词法有:神经网络专家系统分词法和神经网络分词法,前者结合了神经网络的自学特性与专家系统的知识,后者通过神经网络的内在权重来实现正确分词。
【RBF神经网络】径向基函数(RBF)神经网络是神经网络的一种,常用于预测任务。
它由输入层、隐藏层和输出层组成,其中隐藏层使用RBF作为激活函数,实现输入数据的非线性变换,从而适应复杂的数据模式。
在微电网中,RBF神经网络用于短期负荷预测,能有效处理非线性关系,降低外部因素对预测的干扰。
【微电网短期负荷预测】短期负荷预测对于微电网的能量管理和运行优化至关重要。
通过构建RBF神经网络模型,可以预测未来一定时间内的负荷变化。
预测模型的建立通常需要选择与负荷密切相关的输入数据,如时间、气温、风速等,并进行数据预处理。
MATLAB等工具可用于进行网络训练和仿真,以生成预测结果。
【风力发电预测】RBF神经网络同样适用于风力发电量的预测。
通过对风速、气压等相关因素的预测,可以估算微电网系统的风力发电潜力,帮助维持系统的稳定运行,减少风电波动对微电网的影响。
总结来说,人工智能神经网络,尤其是RBF神经网络,为解决新能源微电网中的挑战提供了有效工具。
通过精确预测新能源发电量和电力负荷,可以优化微电网的运行效率,确保其稳定性和自给自足的能力。
此外,这种技术还能促进可再生能源的有效利用,有助于推动能源行业的可持续发展。
1
风力发电的许多子模块,如风速模拟、双馈异步发电机控制模块,电机模块,减速及模块,变桨模块等等。
2025/2/25 9:56:54 2.07MB 风电 MATLAB SIMULI 程序
1
大规模风电大规模风电并网的频率特性及AGC模型研究
2024/12/27 14:47:12 9.56MB 大规模风电
1
一本比较好懂的关于风电控制方面的书籍,作者:叶航冶
2024/12/24 19:41:06 3.73MB 风力发电
1
MATLAB中经典的风速建模,用于风电机组的动态仿真分析等。
2024/11/2 8:27:49 12KB matlab 风速
1
基于深度神经网络的风机叶片缺陷识别方法,代海涛,李颖,为了解决风机叶片缺陷检测效率低下的问题,文章提出了一种基于深度神经网络的风机叶片缺陷识别方法。
首先,根据风电机组的结构特
2024/9/29 19:28:32 548KB 首发论文
1
基于simulink的关于风电模型搭建的仿真,有利于初学者详细的学习和了解
2024/8/30 4:08:01 47KB simulink
1
风电机组、电网相关的matlab模型,内含技术文档WindTurbineBlocksetinMatlabSimulink.pdf,
2024/8/7 2:08:46 1.99MB 风电模型 matlab simulink
1
共 32 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡