1-ENVI基础知识2-影像预处理基础3-自定义坐标系4-MODIS几何校正5-地形图的几何校正6-几何校正(RapidEye几何校正)7-TM图像与SPOT图像配准8-TM图像校正(矢量上选点)9-图像融合10-图像镶嵌11-图像裁剪12-图像增强13-监督分类(样本选择)14-监督分类(分类)15-监督分类(分类后处理)16-监督分类(精度验证)17-非监督分类18-快速制图19-三维可视20-基于GLT的几何校正(风云三号气象卫星为例)21-正射校正22-正射校正(选择控制点QB校正)23-RapidEye正射校正24-构建RPC正射校正(BuildRPC)25-图像自动配准26-基于专家知识决策树分类27-决策树自动阈值分类28-面向对象图像分类(城市信息提取)29-面向对象耕地信息提取30-基于立体像对的DEM提取31-DEM分析与应用32-遥感动态监测33-林冠状态遥感变化监测34-森林砍伐监测35-耕地信息变化监测36-雷达图像基本处理37-高光谱基础38-传感器定标和大气校正39-快速大气校正40-波谱库浏览与建立41-植被识别42-矿物识别43-基于波谱沙漏工具的矿物识别44-植被指数计算和分析45-波段运算(bandmath)46-ENVI的二次开发47-IDL简介48-遥感与GIS一体化
2025/2/19 18:06:16 251KB ENVI IDL 视频 培训
1
ENVI  ENVI(TheEnvironmentforVisualizingImages)是美国ITTVisualInformationSolutions公司的旗舰产品。
ENVI由遥感领域的科学家采用IDL开发的一套功能强大的遥感图像处理软件;
它是快速、便捷、准确地从地理空间影像中提取信息的首屈一指的软件解决方案,它提供先进的,人性化的使用工具来方便用户读取、准备、探测、分析和共享影像中的信息。
今天,众多的影像分析师和科学家选择ENVI来从地理空间影像中提取信息。
已经广泛应用于科研、环境保护、气象、石油矿产勘探、农业、林业、医学、国防&安全、地球科学、公用设施管理、遥感工程、水利、海洋,测绘勘察和城市与区域规划等行业。
  创建于1977年的RSI(现为ITTVisualInformationSolutions公司)已经成功地为其用户提供了超过30年的科学可视化软件服务。
目前ITTVisualInformationSolutions的用户数超过150,000,遍布于80个国家与地区。
从2000年开始连续三年,ENVI被美国国家影像制图局(NIMA)等权威机构组织的Passfind项目遥感影像系统评比当中被评为“最佳的遥感目标识别软件”。
2004年RSI公司并入上市公司ITT公司,并于2006年5月正式成立ITTVisualInformationSolutions公司,ENVI&IDL的发展步伐更加有利与快捷,更多的新功能与算法加进到新版本中。
  强大的影像显示、处理和分析系统  ENVI包含齐全的遥感影像处理功能:常规处理、几何校正、定标、多光谱分析、高光谱分析、雷达分析、地形地貌分析、矢量应用、神经网络分析、区域分析、GPS联接、正射影象图生成、三维图像生成、丰富的可供二次开发调用的函数库、制图、数据输入/输出等功能组成了图像处理软件中非常全面的系统。
  ENVI对于要处理的图像波段数没有限制,可以处理最先进的卫星格式,如Landsat7、IKONOS、SPOT,RADARSAT,NASA,NOAA,EROS和TERRA,并准备接受未来所有传感器的信息。
  强大的多光谱影像处理功能  ENVI能够充分提取图像信息,具备全套完整的遥感影像处理工具,能够进行文件处理、图像增强、掩膜、预处理、图像计算和统计,完整的分类及后处理工具,及图像变换和滤波工具、图像镶嵌、融合等功能。
ENVI遥感影像处理软件具有丰富完备的投影软件包,可支持各种投影类型。
同时,ENVI还创造性地将一些高光谱数据处理方法用于多光谱影像处理,可更有效地进行知识分类、土地利用动态监测。
  更便捷地集成栅格和矢量数据  ENVI包含所有基本的遥感影像处理功能,如:校正、定标、波段运算、分类、对比增强、滤波、变换、边缘检测及制图输出功能,并可以加注汉字。
ENVI具有对遥感影像进行配准和正射校正的功能,可以给影像添加地图投影,并与各种GIS数据套合。
ENVI的矢量工具可以进行屏幕数字化、栅格和矢量叠合,建立新的矢量层、编辑点、线、多边形数据,缓冲区分析,创建并编辑属性并进行相关矢量层的属性查询。
  ENVI的集成雷达分析工具助您快速处理雷达数据  用ENVI完整的集成式雷达分析工具可以快速处理雷达SAR数据,提取CEOS信息并浏览RADARSAT和ERS-1数据。
用天线阵列校正、斜距校正、自适应滤波等功能提高数据的利用率。
纹理分析功能还可以分段分析SAR数据。
ENVI还可以处理极化雷达数据,用户可以从SIR-C和AIRSAR压缩数据中选择极化和工作频率,用户还可以浏览和比较感兴趣区的极化信号,并创建幅度图像和相位图像。
  地形分析工具  ENVI具有三维地形可视分析及动画飞行功能,能按用户制定路径飞行,并能将动画序列输出为MPEG文件格式,便于用户演示成果。
  准备您的影像  ENVI提供了自动预处理工具,可以快速、轻松地预处理影像,以便进行查看浏览或其他分析。
通过ENVI,您可以对影像进行以下处理:  •正射校正  •影像配准  •影像定标  •大气校正  •创建矢量叠加  •确定感兴趣区域(ROIs)  •创建数字高程模型(DEMs)  •影像融合,掩膜和镶嵌  •调整大小,旋转,或数据类型转换  探测影像  ENVI提供了一个直观的用户界面和易用的工具,让您轻松、快速地浏览和探测影像。
您可以使用ENVI完成的工作包括:浏览大型数据集和元数据,对影像进行视觉对比,创建强大的3D场景,创建散点图,探测像素特征等。
  分析影像  ENVI提供了业界领先的图像处理功能,方便您从事各种用途的信息提取。
ENVI提供了一套完整的经科学实践证明的成熟工具来帮助您分析影像。
  数据分析工具  ENVI包括一套综合数据分析工具,通过实践证明的成熟算法快速、便捷、准确地分析图像。
  •创建地理空间统计资料,如自相关系数和协方差  •计算影像统计信息,如平均值、最小/最大值、标准差  •提取线性特征  •合成雷达影像  •主成分计算  •变化检测  •空间特征测量  •地形建模和特征提取  •应用通用或自定义的滤波器  •执行自定义的波段和光谱数学函数  光谱分析工具  光谱分析通过像素在不同波长范围上的反应,来获取有关物质的信息。
ENVI拥有目前最先进的,易于使用的光谱分析工具,能够很容易地进行科学的影像分析。
ENVI的光谱分析工具包括以下功能:  •监督和非监督方法进行影像分类  •使用强大的光谱库识别光谱特征  •检测和识别目标  •识别感兴趣的特征  •对感兴趣物质的分析和制图  •执行像素级和亚像素级的分析  •使用分类后处理工具完善分类结果  •使用植被分析工具计算森林健康度  共享您的信息  ENVI能轻松地整合现有的工作流,让您能在任何环境中与同事们分享地图和报告。
所处理的图像可以输出成常见的矢量格式和栅格影像便于协同和演示。
  自定义您的地理空间影像应用  ENVI建立于一个强大的开发语言—IDL之上。
IDL允许对其特性和功能进行扩展或自定义,以符合用户的具体要求。
这个强大而灵活的平台,可以让您创建批处理、自定义菜单、添加自己的算法和工具,甚至将C++和Java代码集成到您的工具中等。
  自2007年起,与著名的GIS厂商ESRI公司开展全面战略合作,ENVIReaderforArcGIS模块让ArcGIS系列软件全面支持ENVI的数据格式,最新版本ENVI4.5完全支持ArcGIS的Geodatabase等。
2024/10/15 19:08:32 2.72MB envi
1
自动驾驶车辆的本质是轮式移动机器人,是一个集模式识别、环境感知、规划决策和智能控制等功能于一体的综合系统。
人工智能和机器学习领域的进步极大推动了自动驾驶技术的发展。
当前主流的机器学习方法分为:监督学习、非监督学习和强化学习3种。
强化学习方法更适用于复杂交通场景下自动驾驶系统决策和控制的智能处理,有利于提高自动驾驶的舒适性和安全性。
2024/9/10 5:12:16 1.67MB 强化学习 自动驾驶
1
很有用的遥感图像分类介绍的很详细包含监督分类和非监督分类方法
2024/7/14 17:15:48 395KB 分类、监督分类、非监督分类
1
文件中.m文件是通过k-means算法对文件中的图像进行非监督分类,可直接运行!
2024/4/11 20:19:02 214KB matlab
1
LatentDirichletAllocation(LDA)是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。
LDA是一种非监督机器学习技术,可以用来识别大规模文档集(documentcollection)或语料库(corpus)中潜藏的主题信息。
此文档是LDA论文的翻译。
2023/12/8 20:43:03 498KB LDA
1
Matlab关于人工神经网络在预测中的应用的论文二-人工神经网络模型在研究生招生数量预测中的应用.pdf四、灰色人工神经网络人口总量预测模型及应用摘要:针对单一指标进行人口总量预测精度不高的问题,基于灰色系统理论和人工神经网络理论,用1990年至2004年中国人口总量序列建立并训练一个多指标的灰色人工神经网络人口总量预测模型。
对2005年至2007年的人口总量进行检验性预测,结果表明灰色人工神经网络模型大大提高了预测精度。
关键词:人口总量;
灰色系统;
BP人工神经网络;
灰色人工神经网络模型引言:本文从影响人口增长的诸多因素中筛选出6个主要因素,结合灰色系统思想与神经网络的优点建立了一个灰色人工神经网络(GreyArtificialNeuralNetwork,GANN)预测模型,对每一个指标分别用GM(1,1)模型选择最佳的维数进行预测,再利用神经网络非线性映射的特性把这6个指标进行非线性组合得到人口总量的预测结果。
该模型充分利用灰色系统弱化数据的随机性及其动态性和神经网络非线性映射的特性,发挥两者的优势,从而进一步提高预测精度。
中间内容省略~结语:由于传统遗传算法聚类算法本身的优点:在解决聚类问题上速度快、准确率高,加上免疫网络分类算法可以进行非监督学习,确定聚类数及聚类点,在实际聚类应用中有更广阔的适用性;
在这种独特的聚类算法的基础上,结合粗糙集理论构建了一种图像分割算法;
同时,通过实验证明该方法不但比传统的FCM算法聚类速度快,分割效果好,而且比文献[2]的分割准确度还要高。
由于该方法有在聚类上的无教师监督的独特优点,并且通过对人脑MR图聚类和分割的两个实验,证明了该分割算法比以往分割算法在具体应用上都有一定的提高。
灰色人工神经网络人口总量预测模型及应用.pdf五、人工神经网络模型在研究生招生数量预测中的应用摘要:研究生招生数量的确定涉国家政策、社会就业、人才需求、专业分布与需求等诸多因素,这些影响因素往往无法量化,而且各个影响因素之间关系错综复杂,简单的线性模型预测未来招生数量往往难以实现。
尝试采用人工神经网络模型,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,通过对黑龙江省历年研究生招生数量进行系统分析,建立了人工神经网络预测模型,并对未来3年的招生数量进行了预测,预测结果较好,为该方面研究提供了新的研究思路与研究方法。
关键词:黑龙江省;研究生招生;预测;人工神经网络模型引言:关于研究生招生数量的确定,涉及诸多因素,例如国家政策、社会就业、人才需求、专业分布与需求等等。
这些影响因素往往无法量化,很难找出定量化的因素来进行分析,而这些因素又确确实实在很大程度上影响着研究生招生的数量及其分布。
以往分析预测方法主要是确定性数学模型和随机统计方法,例如有限单元法、有限差分法、灰色理论建模、回归分析、谐波分析、时间序列分析、概率统计法等。
这些方法多以线性理论为基础,考虑问题偏于简单化,导致预测精度不高。
本论文结合黑龙江省1981年—2004年的研究生招生规模,针对历年招生数量原始数据信息零散、隐含影响因素过多、诸多影响因素难以确定性描述等问题,探讨应用一种改进的BP网络模型对未来3年黑龙江省研究生招生规模进行预测,为该方面研究提供新的研究思路与研究模式,并渴望为用人单位、科研院校提供制定长远发展与建设规划提供参考。
中间内容省略~结语:采用人工神经网络模型可以有效的处理黑龙江省研究生数量中涉及的人为、政策等随机因素、难以量化等因素的干扰,拟合精度非常高,预测精度也相对较高,为未来研究生招生规模提供科学理论依据,为该方面研究提供新的研究方法与研究思路。
人工神经网络模型在研究生招生数量预测中的应用.pdf六、基于RBF人工神经网络模型预测棉花耗水量摘要:利用MATLAB工具箱,以平均气温、日照时数、平均风速为输入变量,建立了新疆石河子地区棉花耗水量的RBF人工神经网络预测系统,通过2008年实测数据的检验表明,此预测系统网络模型的绝对误差最大为0.0967mm/d、最小为0.0025mm/d、平均为0.0419mm/d,相对误差最大为2.6491%、最小为0.0341%、平均为0.8780%。
可见,网络模型预测的准确度较高,较以往的线性模型更合理,并且此网络训练花费的时间仅需0.0780s,具有一定的实用价值。
关键词:预测;
人工神经网络;
径向基函数;
棉花耗水量引言:计算机人工神经网络是20世纪8
2023/11/14 19:27:42 352KB matlab
1
ADeepNeuralNetworkforUnsupervisedAnomalyDetectionandDiagnosisinMultivariateTimeSeriesData一种用于多变量时间序列数据非监督异常检测和诊断的深度神经网络
2023/11/1 18:09:07 7.79MB 时间序列 异常检测 深度学习
1
详细论述了次要图像分类算法及其C实现丰富实用,对于遥感图像处理学习者用处很大
2015/5/14 13:22:50 227KB 分类代码
1
课程论文事项一、所写题材范围1、引见常用的遥感图像分类的原理,并分别给出如下两个波段(I1和I2)图像的监督分类(分类算法及训练区自行选择,分类算法任选一种)和非监督分类(分类算法任选一种)的结果。
I1=[12342n453210]I2=[43213210123n]n:学号的后两位,如学号后两位02,则n=2;
学号后两位21,则n=21。
2、引见几种常用的多光谱图像和全色图像融合的算法。
假设多光谱图像有两个波段I1、I2(其中I1和I2与第1题图像相同),并假设全色影像为I3=[0123321n1234]试计算应用PCA算法融合多光谱图像(I1和I2)和全色图像I3的结果。
仅供参考!!不保证结果正确性!!!
2015/7/1 1:32:11 30KB 遥感图像
1
共 14 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡