VirusShare网站恶意软件数据集,对于做网络安全技术开发专业人员非常有用,包含几十G文件,可做技术开发。
特此申明:不可作为其他用途
1
这是我第一次上传资料,名称是ARM9指令cache的verilog代码,非常有用,我正在研究Cache,希望大家将来多交流。
2025/8/7 10:12:27 3KB ARM ARM9 Cache Verilog
1
边缘检测是数字图像处理中的一个基础且重要的概念,它用于识别图像中的边界,这些边界通常对应于物体的轮廓。
在硬件实现中,如使用VERILOG这种硬件描述语言(HDL),可以创建高效的边缘检测电路,这对于嵌入式系统、计算机视觉应用以及实时图像处理非常有用。
VERILOG是一种广泛使用的HDL,它允许工程师用类似于编程的语言来描述数字系统的逻辑功能。
通过VERILOG编写的代码可以在FPGA(现场可编程门阵列)或ASIC(应用专用集成电路)上实现,以硬件的形式执行特定的算法,如边缘检测。
边缘检测通常涉及一系计算图像像素的差分或梯度。
其中,最经典的算法之一是Sobel算子,它利用水平和垂直方向的一组滤波器对图像进行卷积,以找出强度变化的区域。
在VERILOG中实现Sobel算子,我们需要定义滤波器系数,并编写逻辑来计算像素邻域内的差分。
以下是可能的VERILOG代码结构:1.**模块定义**:定义一个名为“edge_detector”的模块,输入为原始图像的像素数据,输出为边缘检测后的结果。
可能还需要控制信号,如时钟和使能信号。
```verilogmoduleedge_detector(input[PIXEL_WIDTH-1:0]img_in,//输入图像像素outputreg[PIXEL_WIDTH-1:0]edge_out,//输出边缘像素inputclk,//时钟inputrst//重置信号);```2.**内部变量**:声明用于存储滤波器权重和中间结果的变量。
```verilogreg[PIXEL_WIDTH-1:0]horz_weight,vert_weight;//滤波器权重reg[PIXEL_WIDTH-1:0]horz_diff,vert_diff;//水平和垂直差分```3.**滤波器定义**:定义Sobel算子的水平和垂直滤波器权重。
```verilogparameterSOBEL_X={};//水平滤波器权重parameterSOBEL_Y={};//垂直滤波器权重```4.**计算差分**:在时钟的上升沿,对图像进行卷积并计算差分。
```verilogalways@(posedgeclk)beginif(!rst)beginedge_outTHRESHOLD)edge_out<='1;//达到阈值则认为是边缘,否则设为0end```6.**结束模块定义**:关闭模块。
```verilogendmodule```这个模块可以被综合到FPGA硬件中,实现高速、低延迟的边缘检测。
在实际应用中,可能还需要考虑图像的滚动缓冲、多级缓存和并行处理以提高效率。
VERILOG实现的边缘检测不仅涉及到图像处理的基本概念,还涵盖了数字逻辑设计、并行处理和实时系统设计等多个领域。
理解和实现这样的系统有助于提升硬件设计者在数字信号处理和嵌入式系统设计方面的技能。
2025/8/4 9:34:58 2.93MB verilog
1
这本书介绍了非线性光学的基本原理与光学器件,是学习光通讯相关理论的必学书籍。
本书理论严谨,结合实例,重点剖析概念,体现了非线性的光纤光学在现代光纤通信领域内的应用。
对于从事通信相关的研究人员来说也是一本非常有用的参考书。
2025/8/3 3:14:49 30.85MB 非线性光学 通信
1
ARM平台下交叉编译的DBUS1.2的代码和库,对嵌入式LINUX和基于LINUX的移动平台开发非常有用,里面包含了所有代码和编译后生成的库文件和配置信息文件.
2025/7/4 6:21:27 13.72MB ARM 交叉编译 DBUS1.2
1
对于初学lisp的同学非常有用,这是我的学习lisp的时候搜集的资料。
2025/6/22 16:50:10 1.12MB lisp
1

ASP(Active Server Pages)是一种微软开发的服务器端脚本语言,常用于构建动态网页。
这个“asp常用函数.rar”压缩包包含了一些在ASP编程中常用的函数,这些函数可以帮助开发者更高效地处理字符串、数字和数据转换,从而提高开发效率。
1. **字符串处理函数** - `Len()`:返回字符串的长度,这对于确定字符串内容和处理字符串截取非常有用。
- `Left()`:从字符串的左侧提取指定数量的字符。
- `Right()`:从字符串的右侧提取指定数量的字符。
- `Mid()`:从字符串中间提取指定长度的子串。
- `Trim()`:删除字符串首尾的空格。
- `LTrim()`:删除字符串左侧的空格。
- `RTrim()`:删除字符串右侧的空格。
- `StrConv()`:进行字符串转换,如大小写转换、货币格式化等。
2. **数字处理函数** - `Int()`:将数字向下取整为最接近的整数。
- `Round()`:四舍五入到指定的小数位数。
- `FormatNumber()`:格式化数字,例如添加千位分隔符或控制小数位数。
3. **转换函数** - `CStr()`:将其他类型的数据转换为字符串。
- `CInt()`:将字符串或其他类型的数据转换为整数。
- `CDbl()`:将字符串或其他类型的数据转换为双精度浮点数。
- `CDate()`:将字符串转换为日期时间类型。
- `CLng()`:将字符串或其他类型的数据转换为长整型。
4. **其他常见函数** - `Request()`:获取HTTP请求中的数据,如表单变量、查询字符串等。
- `Response()`:发送HTTP响应,可以用来输出HTML、设置HTTP头等。
- `Server.URLEncode()`:对URL中的特殊字符进行编码,防止URL解析问题。
- `Session()`:处理用户会话状态,存储和检索用户的特定信息。
- `Application()`:在所有用户间共享数据,适用于全局变量。
这些函数是ASP编程的基础,了解并熟练掌握它们对于编写高效、可维护的ASP代码至关重要。
通过"asp常用函数.htm"文档,你可以深入学习每个函数的用法、参数和返回值,以便在实际项目中灵活应用。
记住,理解和实践这些函数是提升ASP编程技能的关键步骤。
2025/6/19 18:22:46 9KB
1

颜色分类leetcode哈里斯角Kps和描述符提取这是纯numpy的Hog特征提取特征描述符特征描述符是图像或图像块的表示,它通过提取有用信息并丢弃无关信息来简化图像。
通常,特征描述符将大小为宽x高x3(通道)的图像转换为长度为n的特征向量/数组。
在HOG特征描述符的情况下,输入图像的大小为64x128x3,输出特征向量的长度为3780。
请记住,可以针对其他大小计算HOG描述符,但在这篇文章中,我坚持使用原始论文中提供的数字,以便您可以通过一个具体示例轻松理解该概念。
这一切听起来不错,但什么是“有用的”,什么是“无关紧要的”?要定义“有用”,我们需要知道它“有用”是为了什么?显然,特征向量对于查看图像是没有用的。
但是,它对于图像识别和对象检测等任务非常有用。
当将这些算法产生的特征向量输入到支持向量机(SVM)等图像分类算法时,会产生良好的结果。
但是,什么样的“特征”对分类任务有用?让我们用一个例子来讨论这一点。
假设我们要构建一个对象检测器来检测衬衫和外套的纽扣。
纽扣是圆形的(在图像中可能看起来是椭圆形的)并
2025/6/19 13:18:46 459KB
1
###RealView编译工具实用程序指南####关于ARM映像转换实用程序(fromelf)**ARM映像转换实用程序(fromelf)**是RealView编译工具套件中的一个重要组件,用于处理目标文件并将其转换成不同的格式。
这对于在不同环境中部署和调试应用程序非常有用。
例如,它可以将二进制文件转换为适用于特定硬件平台的格式,或将多个目标文件合并成一个。
-**功能概述**-**格式转换**:将目标文件从一种格式转换为另一种格式,如将ELF文件转换为二进制文件或SREC文件。
-**信息提取**:从目标文件中提取符号表、重定位条目等信息。
-**映像分析**:分析目标文件的结构,例如段布局、内存使用情况等。
-**使用场景**-在开发过程中,经常需要将编译好的目标文件转换为特定硬件平台支持的格式。
-有时候,也需要将多个目标文件合并成一个,以便于部署和管理。
-**命令行选项**-`fromelf--help`:显示帮助信息。
-`fromelf--version`:显示版本信息。
-`fromelf-b`:指定输出格式为二进制文件。
-`fromelf-s`:显示符号表。
-`fromelf-h`:
2025/6/19 4:30:31 620KB
1

在MATLAB中,计算三维散乱点云的曲率是一项重要的几何分析任务,尤其是在计算机图形学、图像处理和机器学习等领域。
曲率是衡量表面局部弯曲程度的一个度量,可以帮助我们理解点云数据的形状特征。
曲率的计算通常涉及主曲率、高斯曲率和平均曲率三个关键概念。
主曲率是描述曲面在某一点沿两个正交方向弯曲的程度,通常记为K1和K2,其中K1是最大曲率,K2是最小曲率。
主曲率可以提供关于曲线形状的局部信息,例如,当K1=K2时,表明该点处的曲面是球形;
当K1=0或K2=0时,可能对应于平面区域。
高斯曲率(Gaussian Curvature)是主曲率的乘积,记为K = K1 * K2。
高斯曲率综合了主曲率的信息,能反映曲面上任意点的全局弯曲特性。
如果高斯曲率为正,表明该点在凸形曲面上;
若为负,则在凹形曲面上;
为零时,表示该点位于平面上。
平均曲率(Mean Curvature)是主曲率的算术平均值,H = (K1 + K2) / 2。
它提供了曲面弯曲的平均程度,对于理解物体表面的整体形状变化非常有用。
例如,平均曲率为零的点可能表示曲面的边缘或者尖锐转折。
在MATLAB中,计算这些曲率通常需要以下步骤:1. **数据预处理**:你需要加载散乱点云数据。
这可以通过读取txt文件(如www.pudn.com.txt)或使用特定的数据集来完成。
数据通常包含每个点的XYZ坐标。
2. **邻域搜索**:确定每个点的邻域,通常采用球形邻域或基于距离的邻域。
邻域的选择直接影响曲率计算的精度和稳定性。
3. **拟合曲面**:使用最近邻插值、移动最小二乘法(Moving Least Squares, MLS)或其他方法,将点云数据拟合成一个连续曲面。
在本例中,"demo_MLS"可能是一个实现MLS算法的MATLAB脚本。
4. **计算几何属性**:在拟合的曲面上,计算每个点的曲率。
这涉及到计算曲面的曲率矩阵、主轴和主曲率。
同时,高斯曲率和平均曲率可以通过已知的主曲率直接计算得出。
5. **结果可视化**:你可以使用MATLAB的图形工具,如`scatter3`或`patch`函数,将曲率信息以颜色编码的方式叠加到原始点云上,以直观展示曲率分布。
在实际应用中,曲率计算对于识别物体特征、形状分析和目标检测等任务具有重要价值。
例如,在机器人导航、医学图像分析和3D重建等领域,理解点云数据的几何特性至关重要。
总结来说,MATLAB中的算法通过一系列数学操作和数据处理,可以有效地计算三维散乱点云的主曲率、高斯曲率和平均曲率,从而揭示其内在的几何结构和形状特征。
正确理解和运用这些曲率概念,有助于在相关领域进行更深入的研究和开发。
2025/6/18 16:18:34 130KB
1
共 201 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡