马尔科夫链matlab程序包。
马尔科夫链定义本身比较简单,它假设某一时刻状态转移的概率只依赖于它的前一个状态。
举个形象的比喻,假如每天的天气是一个状态的话,那个今天是不是晴天只依赖于昨天的天气,而和前天的天气没有任何关系。
当然这么说可能有些武断,但是这样做可以大大简化模型的复杂度,因此马尔科夫链在很多时间序列模型中得到广泛的应用,比如循环神经网络RNN,隐式马尔科夫模型HMM等,当然MCMC也需要它。
    如果用精确的数学定义来描述,则假设我们的序列状态是...Xt−2,Xt−1,Xt,Xt+1,......Xt−2,Xt−1,Xt,Xt+1,...,那么我们的在时刻Xt+1Xt+1的状态的条件概率仅仅依赖于时刻XtXt,即:P(Xt+1|...Xt−2,Xt−1,Xt)=P(Xt+1|Xt)P(Xt+1|...Xt−2,Xt−1,Xt)=P(Xt+1|Xt)    既然某一时刻状态转移的概率只依赖于它的前一个状态,那么我们只要能求出系统中任意两个状态之间的转换概率,这个马尔科夫链的模型就定了。
我们来看看下图这个马尔科夫链模型的具体的例子。
2025/4/8 19:03:14 15KB 马尔科夫链
1
语音增强是信号处理领域中的一个重要的组成部分。
在许多语音处理的应用中,例如移动通信,语音识别和助听器,语音信号的处理不得不在具有噪声的环境下进行。
在过去的几十年里,人们提出了许多方法去消除噪声和减少语音失真,例如谱减法,基于小波的方法,隐式马尔科夫模型法和信号子空间法等。
小波分析由于能同时在时域和频域中对信号进行分析,所以它能有效地实现对信号的去噪。
介绍了一种语音增强系统的设计方法,采用LeastMeanSquare(LMS)算法和小波变换相结合的方法对带噪语音进行去噪,并在MATLAB的Simulink环境下建立了该系统的模型。
通过对该模型的仿真表明:该方法去噪效果明显,为该系统在硬件上的实现打下了理论基础。
2024/7/22 14:24:23 928KB 语音增强
1
本文引见了HMM在R语言中的应用和实现。
本文引见了HMM在R语言中的应用和实现。
2023/3/18 11:12:28 413KB 隐式马尔科夫 R HMM
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡