面对不同类型、偏好的消费者以及他们之前的消费数据作为基础,利用逻辑回归算法和随机森林回归算法构建模型,在已知数据的基础上进行拟合和调试,得出最优化的规律,并根据这一规律预测消费者的动机,此项研究在编程基础、算法运用、模型构建和解决现实问题都有很大的意义。
2025/1/3 1:21:15 65KB python
1
随机森林工具包RF_MexStandalone-v0.02-precompiled,已经通过编译,放置到matlab工具箱路径toolbox,设置路径到path调用函数即可实现随机森林回归和分类
2024/7/5 6:56:33 446KB 随机森林
1
针对神经网络算法在当前PM2.5浓度预测领域存在的易过拟合、网络结构复杂、学习效率低等问题,引入RFR(randomforestregression,随机森林回归)算法,分析气象条件、大气污染物浓度和季节所包含的22项特征因素,通过调整参数的最优组合,设计出一种新的PM2.5浓度预测模型——RFRP模型。
同时,收集了西安市2013--2016年的历史气象数据,进行模型的有效性实验分析。
实验结果表明,RFRP模型不仅能有效预测PM2.5浓度,还能在不影响预测精度的同时,较好地提升模型的运行效率,其平均运行时间为O.281S,约为BP-NN(backpropagationneuralnetwork,BP神经网络)预测模型的5.88%。
2024/3/5 9:44:07 1.18MB 回归分析
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡