流体力学的实验报告其中有思考题包含的实验为伯努利实验泵特性曲线实验毕托管测速实验不可压缩流体恒定流动动量定律实验沿程水头损失实验雷诺实验局部阻力损失实验
2025/8/14 19:36:26 293KB 流体力学 实验
1
一本目前为止最好的fluent学习书本第一章流体力学基础与FLUENT简介第一节概论一、流体的密度、重度和比重二、流体的黏性——牛顿流体与非牛顿流体三、流体的压缩性——可压缩与不可压缩流体四、液体的表面张力第二节流体力学中的力与压强一、质量力与表面力二、绝对压强、相对压强与真空度三、液体的汽化压强四、静压、动压和总压第三节能量损失与总流的能量方程一、沿程损失与局部损失二、总流的伯努里方程三、人口段与充分发展段第四节流体运动的描述一、定常流动与非定常流动二、流线与迹线三、流量与净通量四、有旋流动与有势流动五、层流与湍流第五节亚音速与超音速流动一、音速与流速二、马赫数与马赫锥三、速度系数与临界参数四、可压缩流动的伯努里方程五、等熵滞止关系式第六节正激波与斜激波一、正激波二、斜激波第七节流体多维流动基本控制方程一、物质导数二、连续性方程三、N—S方程第八节边界层与物体阻力一、边界层及基本特征二、层流边界层微分方程三、边界层动量积分关系式四、物体阻力第九节湍流模型第十节FLUENT简介一、程序的结构二、FLUENT程序可以求解的问题三、用FLUENT程序求解问题的步骤四、关于FLUENT求解器的说明五、FLUENT求解方法的选择六、边界条件的确定第二章二维流动与传热的数值计算第一节冷、热水混合器内部二维流动一、前处理——利用GAMBIT建立计算模型第1步确定求解器第2步创建坐标网格图第3步由节点创建直线第4步创建圆弧边第5步创建小管嘴第6步由线组成面第7步确定边界线的内部节点分布并创建结构化网格第8步设置边界类型第9步输出网格并保存会话二、利用FLUENT进行混合器内流动与热交换的仿真计算第1步与网格相关的操作第2步建立求解模型第3步设置流体的物理属性第4步设置边界条件第5步求解第6步显示计算结果第7步使用二阶离散化方法重新计算第8步自适应性网格修改功能小结课后练习第二节喷管内二维非定常流动一、利用GAMBIT建立计算模型第1步确定求解器第2步创建坐标网格图和边界线的节点第3步由节点创建直线第4步利用圆角功能对I点处的角倒成圆弧第5步由边线创建面第6步定义边线上的节点分布第7步创建结构化网格第8步设置边界类型第9步输出网格并保存会话二、利用FLUENT进行喷管内流动的仿真计算第1步与网格相关的操作第2步确定长度单位第3步建立求解模型第4步设置流体属性第5步设置工作压强为0atm第6步设置边界条件第7步求解定常流动第8步非定常边界条件设置以及非定常流动的计算第9步求解非定常流第10步对非定常流动计算数据的保存与后处理小结课后练习第三节三角翼的可压缩外部绕流一、利用GAMBIT建立计算模型第1步启动Gambit,并选择求解器为FLUENT5/6第2步创建节点第3步由节点连成线第4步由边线创建面第5步创建网格第6步设置边界类型第7步输出网格文件二、利用FLUENT进行仿真计算第1步启动FLUENT2D求解器并读入网格文件第2步网格检查与确定长度单位第3步建立计算模型第4步设置流体材料属性第5步设置工作压强第6步设置边界条件第7步利用求解器进行求解第8步计算结果的后处理小结课后练习第四节三角翼不可压缩的外部绕流(空化模型应用)第1步启动FLUENT2D求解器并读入网格文件第2步网格检查与确定长度单位第3步设置求解器第4步设置流体材料及其物理性质第5步设置流体的流相第6步设置边界条件第7步求解第8步对计算结果的后处理小结课后练习第五节VOF模型的应用一、利用GAMBIT建立计算模型第1步启动GAMBIT并选择FLUENT5/6求解器第2步建立坐标网格并创建节点第3步由节点连成直线段第4步创建圆弧第5步创建线段的交点G第6步将两条线在G点处分别断开第7步删除DG直线和FG弧线第8步由边创建面第9步定义边线上的节点分布第10步在面上创建结构化网格第11步设置边界类型第12步输出网格文件并保存会话二、利用FLUENT2D求解器进行求解第1步读入、显示网格并设置长度单位第2步设置求解器第3步设置流体材料及属
2025/7/10 13:07:48 4.29MB 计算流体
1
标题中的"NACA2412"指的是一个特定的机翼剖面形状,它属于NACA(美国国家航空咨询委员会)四数字系列。
这个系列的剖面设计是根据四个数字来定义的,其中前两个数字表示机翼厚度的最大百分比在离前缘一定距离处达到,后两个数字表示该最大厚度位置到前缘的距离占整个弦长的百分比。
NACA2412意味着在20%弦长的位置,机翼厚度达到最大,为4%的弦长。
描述中提到的"弦上的涡流分离"是指在飞行中,气流在经过机翼表面时,由于机翼的形状和攻角,会在某些点上产生涡旋分离。
这通常发生在升力降低、阻力增加的不利情况下,例如在大攻角或高速流动时。
涡流分离会导致效率下降,因为它增加了空气流动的不稳定性,并且可能导致噪声和振动。
"Abbott&VonDoenhoff"和"Kuethe&Chow"是两位著名的航空工程师,他们对翼型性能进行了广泛的研究并发表了相关文献。
他们的数据被用作计算和验证机翼表面压力分布的标准参考。
比较这些数据有助于确保计算的准确性和可靠性。
在MATLAB环境下,"hw2.m.zip"可能包含一个名为"hw2.m"的MATLAB脚本文件,用于实现对NACA2412翼型的流体力学分析。
MATLAB是一个强大的数值计算工具,可以用于解决复杂的数学问题,包括求解流体动力学方程,如纳维-斯托克斯方程,以预测翼型表面的压力分布。
这个脚本可能包含了以下步骤:1.定义NACA2412翼型的几何参数。
2.使用数值方法(如有限差分或边界元方法)构建翼型的流场模型。
3.应用适当的边界条件,如无滑移条件(机翼表面的气流速度等于零)和远场条件。
4.解决流体力学方程,计算流场的速度和压力分布。
5.对比计算结果与Abbott&VonDoenhoff和Kuethe&Chow的数据,评估模型的准确性。
通过MATLAB编程,用户不仅可以可视化翼型的压力分布,还可以分析涡旋分离的影响,优化设计,提高飞机性能。
这样的工作对于理解和改进飞行器的气动特性至关重要。
2025/5/17 12:24:04 3KB matlab
1
管道流体阻力计算软件管道流体阻力计算软件-本文出自马后炮化工-让天下没有难学的化工技术,原文地址:http://bbs.mahoupao.net/thread-4016-8-1.html
2024/12/21 21:29:15 2KB pipeflow
1
fluent二维翼型仿真,流速2m/s,出口为压力出口,壁面为无滑移壁面,采用结构化网格,通过验证网格无关性,得出合适的网格数量,采用SIMPLC的求解方法,压力,转矩的耦合采用二级迎风,最终通过升力系数与阻力系数的监控,获得升力系数与阻力系数
2024/12/14 3:40:32 1.63MB 二维翼型
1
激光雷达该存储库包含用于仿真VelodyneVLP-16LiDAR传感器的MATLAB代码,以及用于查找发射的激光与三角形和高尔夫球的交点的算法。
高尔夫球的交叉点是通过在重力,阻力,升力等情况下生成高尔夫球的轨迹来计算的。
对于在Drag.m,Lift.m,Both.m和Gravity.m中实现的逻辑(它们是用于生成高尔夫球轨迹的文件)的感谢,请访问UW化学工程系学生RamaAl-Enzy。
2024/8/31 2:20:41 14KB MATLAB
1
电磁场与社会发展---电磁水处理技术引言:在工业循环冷却水系统中,随着系统的运行换热表面会生成水垢,水垢的大量沉积将降低换热表面的传热效果,使水的流动阻力增大甚至阻塞水流,还会诱发垢下腐蚀,严重影响系统的正常运行。
为了解决循环水系统的结垢问题,必须对系统进行阻垢处理,常用的有化学法和物理法。
化学阻垢法主要有石灰软化法、离子交换法、投加阻垢剂和化学清洗法,但这些方法操作复杂、运行成本高,并且会对环境造成二次污染。
随着水资源的日益短缺和环境保护要求的提高,各种用于防垢处理的物理方法及技术应运而生。
电磁水处理技术是一种物理抑垢方法,因其无添加试剂,无毒无污染,操作简单,成本低等优点,受到业界的广泛关注。
针对国内外学者的研究情况,从电磁水处理技术的概念和原理、发展现状、关键问题、对社会发展的影响以及发展趋势进行了分析。
2024/8/29 2:09:32 513KB 电磁场 社会发展 电磁水处理 报告
1
自己做的一个基于比例导引法搭建的一个三维的simulink的模块,三自由度模型,考虑导弹质点、倾角、偏角、攻角、升力阻力等等,最后在M文件给出仿真结果图。
2016版的matlab,运行时在2016版本及以上运行。
2024/6/1 4:22:45 41KB simulink
1
采用matlab编写micell积分的程序计算wigley船型兴波阻力
2024/5/30 14:22:23 3KB micell积分 兴波阻力 matlab
1
本程序可用于汽车动力性计算,分8个图表,包括:1.发动机特性拟合曲线;
2.汽车速度曲线;
3.汽车驱动力曲线;
4.汽车驱动力曲线-行驶阻力曲线;
5.汽车加速度曲线;
6.汽车加速时间-速度曲线;
7.汽车爬坡性能曲线;
8.汽车功率平衡图。
注:拟合计算需要输入的发动机参数比较少,特性曲线是采用二阶抛物线拟合得到,计算绘制的图表存在一定的误差。
精确计算需要输入发动机特性曲线点,计算精度比较高。
1
共 33 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡