内容概要:本文详细探讨了遗传算法(GA)在笔状阵列天线优化中的应用与实现。
笔状阵列天线优化是一个复杂的多目标优化问题,涉及天线增益、方向图性能等指标。
遗传算法作为一种模拟自然选择和遗传机制的优化方法,适用于解决这类高维、非线性问题。
文中介绍了遗传算法的基本原理、流程,并给出了MATLAB源代码和运行步骤。
实验结果显示,遗传算法能有效优化笔状阵列天线的性能,提高了天线的设计质量。
适合人群:天线设计和信号处理领域的研究人员、工程师以及高校相关专业的学生。
使用场景及目标:本文适用于需要对笔状阵列天线进行优化设计的场景,旨在通过遗传算法寻找最佳天线参数配置,提高天线的整体性能。
其他说明:遗传算法不仅可以在单目标优化中发挥重要作用,还可在多目标优化、约束优化等问题中进一步应用和发展。
此外,该方法也可扩展应用于其他类型的天线设计,如三维阵列天线、共形阵列天线等。
1
完整的遗传算法GA优化BP神经网络的代码,带数据,简单易懂,可修改
2025/3/18 12:09:03 52KB 遗传算法 BP神经网络 预测
1
摘要:遗传算法(GA)和人工神经网络(ANN)的相互结合有辅助式和合作式两种方式.本文在此基础上提出了融合、BP_GA和GA_BP三种算法,并采用GA_BP算法同时优化BP神经网络的结构、权值和阈值,研究和实现了一套先进的编码技术和进化策略,克服了传统BP神经网络经验尝试方法的盲目性.实例优化与检验结果表明:遗传算法优化获得的神经网络比由经验尝试法得到的BP网络性能更优异,方法更合理.关键词:遗传算法:神经网络;拓扑结构;权值
2025/2/18 10:16:08 484KB 遗传算法 神经网络 拓扑结构
1
遗传算法GA工具箱,不需更改,可直接使用,已亲自试验过。
2025/1/24 14:08:16 2.11MB GA工具箱
1
使用遗传算法(GA)来自动率定经典水文概念性模型———新安江模型的各个参数,供大家学习参考VS2008withSP1平台下编写,打开即可编译运行!
2024/12/28 8:22:25 92KB 遗传算法 GA 新安江模型 自动调参
1
MATLAB实现遗传算法,适合初学者学习使用,代码真实可用
2024/11/12 3:53:16 5KB MATLAB 遗传算法
1
本框架提供了有关粒子群算法(PSO)和遗传算法(GA)的完整实现,以及一套关于改进、应用、测试、结果输出的完整框架。
本框架对粒子群算法与遗传算法进行逻辑解耦,对其中的改进点予以封装,进行模块化,使用者可以采取自己对该模块的改进替换默认实现组成新的改进算法与已有算法进行对比试验。
试验结果基于Excel文件输出,并可通过设定不同的迭代结束方式选择试验数据的输出方式,包括:1.输出随迭代次数变化的平均达优率数据(设定终止条件区间大于0)。
2.输出随迭代次数变化的平均最优值数据(设定终止条件区间等于0)。
本框架了包含了常用基准函数的实现以及遗传算法与粒子群算法对其的求解方案实现和对比,如TSP,01背包,Banana函数,Griewank函数等。
并提供大量工具方法,如KMeans,随机序列生成与无效序列修补方法等等。
对遗传算法的二进制编码,整数编码,实数编码,整数序列编码(用于求解TSP等),粒子群算法的各种拓扑结构,以及两种算法的参数各种更新方式均有实现,并提供接口供使用者实现新的改进方式并整合入框架进行试验。
其中还包括对PSO进行离散化的支持接口,和自己的设计一种离散PSO方法及其用以求解01背包问题的实现样例。
欢迎参考并提出宝贵意见,特别欢迎愿意协同更新修补代码的朋友(邮箱starffly@foxmail.com)。
代码已作为lakeast项目托管在GoogleCode:http://code.google.com/p/lakeasthttp://code.google.com/p/lakeast/downloads/list某些类的功能说明:org.lakest.common中:BoundaryType定义了一个枚举,表示变量超出约束范围时为恢复到约束范围所采用的处理方式,分别是NONE(不处理),WRAP(加减若干整数个区间长度),BOUNCE(超出部分向区间内部折叠),STICK(取超出方向的最大限定值)。
Constraint定义了一个代表变量约束范围的类。
Functions定义了一系列基准函数的具体实现以供其他类统一调用。
InitializeException定义了一个代表程序初始化出现错误的异常类。
Randoms类的各个静态方法用以产生各种类型的随机数以及随机序列的快速产生。
Range类的实现了用以判断变量是否超出约束范围以及将超出约束范围的变量根据一定原则修补到约束范围的方法。
ToStringBuffer是一个将数组转换为其字符串表示的类。
org.lakeast.ga.skeleton中:AbstractChromosome定义了染色体的公共方法。
AbstractDomain是定义问题域有关的计算与参数的抽象类。
AbstractFactorGenerator定义产生交叉概率和变异概率的共同方法。
BinaryChromosome是采用二进制编码的染色体的具体实现类。
ConstantFactorGenerator是一个把交叉概率和变异概率定义为常量的参数产生器。
ConstraintSet用于在计算过程中保存和获取应用问题的各个维度的约束。
Domain是遗传算法求解中所有问题域必须实现的接口。
EncodingType是一个表明染色体编码类型的枚举,包括BINARY(二进制),REAL(实数),INTEGER(整型)。
Factor是交叉概率和变异概率的封装。
IFactorGenerator参数产生器的公共接口。
Population定义了染色体种群的行为,包括种群的迭代,轮盘赌选择和交叉以及最优个体的保存。
org.lakeast.ga.chromosome中:BinaryChromosome二进制编码染色体实现。
IntegerChromosome整数编码染色体实现。
RealChromosome实数编码染色体实现。
SequenceIntegerChromosome整数序列染色体实现。
org.lakeast.pso.skeleton中:AbstractDomain提供一个接口,将粒子的位置向量解释到离散空间,同时不干扰粒子的更新方式。
AbstractF
2024/10/11 21:51:28 1.42MB 遗传算法 粒子群算法 GA PSO
1
本文件包括源码,实验说明文档,实验总结PPTHaveahappyexperiment!
1
Matlab-背包问题的遗传算法GA源码
2024/3/12 10:35:09 171KB 背包问题 遗传算法 GA MATLAB
1
用遗传算法GA训练BP神经网络的程序,非常实用的MATLAB代码
2024/2/29 3:32:08 609KB GA BP神经网
1
共 18 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡