自由曲面透镜,均匀照明,涉及matlab编程,二次配光设计
2024/6/27 0:08:09 5KB 非成像光学
1
LED二次光学设计中的透镜设计,根据非成像光学原理,利用matlab计算生成二维点坐标,可导入3维建模软件,生产模型。
代码经过测试,可成功完成计算。
大家可以参考一下
2024/6/19 14:25:46 8KB MATLAB LED光学设计
1
用于LD光束准直整形的GRIN透镜的设计.pdf
2024/6/2 14:41:57 107KB 光学 透镜
1
从随机电磁光束的相干和偏振性的统一理论出发,利用交叉谱密度矩阵传输公式,推导出随机双曲余弦高斯(ChG)电磁光束通过透镜后2×2交叉谱密度矩阵的传输解析公式,并用以表示任意两点的互偏振度,即纵向互偏振度(LDCP)和横向互偏振度(TDCP)。
研究表明,随机ChG电磁光束的互偏振度与透镜焦距及随机ChG电磁光束的参数,例如随机ChG电磁光束系数比、离心参数和自相关长度等有关。
随机高斯谢尔模型(GSM)电磁光束通过透镜的互偏振度可作为随机ChG电磁光束离心参数为0的特例得出。
对主要结果用数值计算作了说明,并给出相应的物理解释。
1
设计一个望远镜系统,设计双胶合透镜的镜片
2024/5/18 13:08:16 546KB 工程光学,望远镜,像差
1
在分析含热透镜的非稳腔固体激光器普遍特性的基础上,分别定义了几何放大率和输出曲率半径的热敏感度,结合腔镜失调敏感度而成为设计该类谐振腔的重要依据。
据此,进一步改善和发展了新型的棒成像非稳腔。
2024/4/21 9:22:13 1.42MB 热透镜 热敏感度 棒成像
1
对基于正交散焦光栅的M2因子测量系统进行了理论研究,该测量系统可以同时测量光束束腰附近9个不同位置处的光强分布,并由二阶矩方法计算束宽,经双曲线拟合得到被测光束的M2因子。
为了优化系统设计和提高系统测量精度,根据高斯光束的薄透镜变换关系,针对基模高斯光束和多模高斯光束,分析被测光束束腰宽度、束腰位置和模式分布对测量系统测量精度的影响。
结果表明,基模高斯光束或者多模高斯光束所对应基模高斯光束的束腰宽度在设计范围内时,系统可在较大的测量距离内具有较高的测量精度。
该研究为实际系统的设计和测量提供了理论指导。
1
数字全息显微术(DHM)是一种使用光学干涉图案来记录三维光场的技术,用于成像,传感和显微技术应用。
“无透镜”串联DHM是最简单的布置,不需要透镜,没有镜子,通常仅需要光源,样品和诸如CCD或CMOS像素阵列之类的数字成像器芯片。
尽管如此简单,但无透镜直列DHM能够在宽阔的视场上生成高分辨率图像,并允许研究人员记录光场的幅度和相位,并以数字方式重建形状,厚度,3D位置,速度,泡Kong或小颗粒的折射率和其他参数。
因此,将在线DHM与微流控技术,光流测速,低成本成像,即时诊断,单细胞跟踪,细胞流式细胞仪,计数,分选和芯片实验室相结合有很多潜在的机会技术。
2024/3/22 12:17:58 1.9MB
1
相分离一直是液晶(LC)-聚合物复合材料中一个有趣且重要的主题。
我们通过基于振幅调制的空间光调制器的无掩模光刻系统研究了LC聚合物复合物中光致聚合引起的相分离。
通过优化曝光条件和材料,我们在LC聚合物复合材料中实现了二维(2D)液晶液滴阵列(LCDA)。
进一步的研究表明,这种二维LCDA作为微透镜阵列,在一定电压下表现出与偏振无关的,电可调的聚焦特性。
由于在成本效益,快速制造和偏振无关的,电可调聚焦方面的优势,LC-聚合物复合材料中的这种相分离的微透镜阵列可以找到许多潜在的光学应用。
2024/3/14 4:55:54 1.54MB 研究论文
1
提出并设计了一个应用数字微镜(DMD)的哈达玛变换近红外光谱仪。
以光栅为分光元件,用DMD代替传统的机械式哈达玛编码模板进行光学调制,用InGaAs单点光电二极管探测调制后的光谱信号。
综合考虑分辨率、能量利用率、像差和体积等因素,合理选择狭缝长和宽、光栅入射角及透镜焦距,采用光路分段优化法进行光学设计,通过DMD面阵上的狭缝像和探测器上的点斑尺寸等分析设计结果。
模拟分辨率优于4nm,探测器上点斑尺寸小于3mm,光学系统尺寸为75mm×25mm×85mm。
为提高光谱仪对弱光谱信号的探测能力,在系统前加入了一种集光结构,使从光纤出射的光能的利用率理论值提高24.2%。
实验结果表明,该光谱仪的光谱分辨率优于6nm,通过添加集光结构可以大大提高光谱仪的能量利用效率。
该光谱仪具有分辨率高、能量利用率高、体积小、成本低等优点,有广阔的应用前景。
1
共 48 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡