消息队列,进程间通信,管道通信,共享存储区,socket通信等,功能虽不是很完善,但能力有限
2025/3/11 0:01:41 4.6MB 操作系统
1
前言1引言11.1什么是操作系统?31.1.1所有延长机器的作业系统41.1.2作为一个资源管理器的作业系统61.2操作系统的历史71.2.1第一代(1945年至1955年)真空管71.2.2第二代(1955年至1965年)晶体管和批处理系统81.2.3第三代(1965年至1980年)的集成电路101.24第四代(1980年至今)个人电脑151.3计算机硬件检查19l.3.1处理器191.3.2内存231.3.3磁盘261.3.4胶带271.3.5I/O设备27(I/O即输入输出)1.3.6总线3013.7启动计算机331.4操作系统动物园331.4.1大型机操作系统341.4.2服务器操作系统341.4.3多处理器的操作系统341.4.4个人电脑操作系统351.4.5掌上电脑操作系统351.4.6嵌入式操作系统.351.4.7传感器节点的操作系统361.4.8实时操作系统361.4.9智能卡操作系统371.5操作系统的概念371.5.1流程381.5.2地址空间401.5.3文件401.5.4输入/输出431.5.5保护441.5.6壳牌441.5.7系统发育个体发育重演461.6系统调用491.6.1流程管理系统调用521.6.2文件管理系统调用561.6.3目录管理系统调用571.6.4杂项系统调用581.6.5在Windows的Win32API591.7操作系统结构621.7.1单片系统621.7.2分层系统631.7.3微内核641.7.4客户-服务器模型671.7.5虚拟机671.7.6出的内核711.8根据C的WORLD721.8.1C语言721.8.2头文件731.8.3大的编程项目741.8.4运行时模型751.9操作系统上的研究761.10本书的其余部分的概要771.11公制单位781.12概要792进程和线程2.1工序832.1.1过程模型842.1.2进程创建862.1.3进程终止882.1.4流程层次结构892.1.5进程国家902.1.6实施流程912.1.7多多建模的建模932.2螺纹952.2.1线程使用情况952.2.2古典的线程模型1002.2.3POSIX线程1042.2.4在用户空间中实现的线程1062.2.5在内核中实现的线程1092.2.6混合实现1102.2.7调度激活1112.2.8弹出式线程1122.2.9使单线程代码中使用多线程技术1142.3进程间通信1172.3.1静态条件1172.3.2关键区域1192.3.3忙等待的互斥1202.3.4睡眠和唤醒1252.3.5信号灯1282.3.6互斥1302.3.7显示器1342.3.8消息传递1402.3.9壁垒1442.4调度1452.4.1调度1452.4.2批处理系统的调度1522.4.3调度互动系统1542.4.4调度实时系统1602.4.5政策与机制1612.4.6线程调度1622.5经典的IPC问题1632.5.1哲学家就餐问题1642.5.2读者和作者的问题1672.6进程和线程的研究1682.7概要169习题95  第3章存储管理99  3.1无存储器抽象99  3.2一种存储器抽象:地址空间101  3.2.1地址空间的概念101  3.2.2交换技术103  3.2.3空闲内存管理104  3.3虚拟内存106  3.3.1分页107  3.3.2页表108  3.3.3加速分页过程109  3.3.4针对大内存的页表111  3.4页面置换算法113  3.4.1最优页面置换算法114  3.4.2最近未使用页面置换算法114  3.4.3先进先出页面置换算法115  3.4.4第二次机会页面置换算法115  3.4.5时钟页面置换算法116  3.4.6最近最少使用页面置换算法116  3.4.7用软件模拟lru117  3.4.8工作集
2025/2/26 1:24:41 84.5MB 操作系统
1
http://blog.csdn.net/ezhchai/article/details/74991304文章中讲解的示例程序完整工程文件
2025/1/3 1:23:40 16KB 命名管道
1
在开始今天的话题之前,简单的来看有关Python的体系结构。
为了方便起见我做一张导图,让大家有个宏观的认识。
今天本来准备全面的聊聊有关高性能并发这个话题来着,但是周末马上要来了啊。
所以我就取了其中的一点来介绍,关于其他的方面,有兴趣的小伙伴可以和我交流。
谈高效并发,往往脱离不了以下三种方案:1.进程:每个逻辑控制流都是一个进程,由内核来调度和维护。
因为进程有独立的虚拟地址空间,想要和其他控制流通信必须依靠显示的进程间通信,即我们所说的IPC机制2.线程:线程应该是我们最为熟知的。
它本质是运行在一个单一进程上下文中的逻辑流,由内核进行调度。
3.I/O多路复用:应用程序在一个进程的上下文中显式地调
2024/9/13 12:13:04 362KB 聊聊Python中的多线程
1
开发环境为eclipse+cdt插件,用消息与共享内存实现信号量的控制设计内容要求产生3个进程:1、两个进程模拟需要进入临界区的用户进程,当需要进入临界区时,显示:“进程x请求进入临界区…”,同时向管理进程提出申请;
申请返回,表示进入了临界区。
在临界区中等待一段随机时间,并显示:“进程x正在临界区…”;
当时间结束,显示:“进程x退出临界区…”,同时向管理进程提出退出申请;
当申请返回,显示:“进程x已退出临界区。
”2、一个进程作为原语的管理进程,接受其他进程的临界区进入请求:如果允许进入,则设置相应变量,然后返回;
如果不允许进入,则进入循环等待,直到允许为止;
3、对临界区的访问应遵循空闲让进、忙则等待、有限等待、让权等待的准则。
4、进程间通信可以采用信号、消息传递、管道或网络通信方式。
1
第1篇游戏和外挂初识篇第1章认识游戏和外挂1.1游戏安全现状1.2什么是外挂1.3内存挂与游戏的关系1.4游戏的3个核心概念1.4.1游戏资源的加/解密1.4.2游戏协议之发包模型1.4.3游戏内存对象布局1.5外挂的设计思路1.6反外挂的思路1.7本章小结第2篇外挂技术篇第2章五花八门的注入技术2.1注册表注入2.2远线程注入2.3依赖可信进程注入2.4APC注入2.5消息钩子注入2.6导入表注入2.7劫持进程创建注入2.8LSP劫持注入2.8.1编写LSP2.8.2安装LSP2.9输入法注入2.10ComRes注入第3章浅谈无模块化3.1LDR_MODULE隐藏3.2抹去PE“指纹”3.3本章小结第4章安全的交互通道4.1消息钩子4.2替代游戏消息处理过程4.3GetKeyState、GetAsyncKeyState和GetKeyBoardState4.4进程间通信4.5本章小结第5章未授权的Call5.1CallStack检测5.2隐藏Call5.2.1Call自定义函数头5.2.2构建假栈帧5.3定位Call5.3.1虚函数差异调用定位Call5.3.2send()函数回溯定位Call5.4本章小结第6章Hook大全6.1Hook技术简介6.2IATHook在全屏加速中的应用6.3巧妙的虚表Hook6.3.1虚表的内存布局6.3.2C++中的RTTI6.3.3Hook虚表6.4DetoursHook6.4.1Detours简介6.4.2DetoursHook的3个关键概念6.4.3DetoursHook的核心接口6.4.4DetoursHook引擎6.5高级Hook6.5.1S.E.H简介6.5.2V.E.H简介6.5.3硬件断点6.5.4S.E.HHook6.5.5V.E.HHook6.5.6检测V.E.HHook6.6本章小结第7章应用层防护7.1静态保护7.2动态保护7.2.1反dump7.2.2内存访问异常Hook7.3本章小结第3篇游戏保护方案探索篇第8章探索游戏保护方案8.1分析工具介绍8.1.1GameSpider8.1.2KernelDetective8.2定位保护模块8.2.1定位ring0保护模块8.2.2定位ring3保护模块8.2.3定位自加载模块8.3分析保护方案8.3.1ring3保护方案8.3.2ring0保护方案8.4本章小结第4篇射击游戏安全专题第9章射击游戏安全9.1自动开枪9.1.1易语言简介9.1.2易语言版自动开枪外挂9.2反后坐力9.2.1平衡Y轴法9.2.2AutoIt脚本法9.3DirectXHack9.3.1DirectX简介9.3.2用Direct3D绘制图形9.3.3D3D9的Hack点9.3.4D3D9Hook9.4本章小结第5篇外挂检测技术篇第10章外挂的检测方法10.1代码篡改检测10.2未授权调用检测10.3数据篡改检测10.3.1吸怪挂分析10.3.2线程转移和消息分流10.4本章小结附录A声明附录B中国计算机安全相关法律及规定
2024/7/29 21:32:26 181.87MB 游戏攻防
1
1、图书管理系统以UNIX系统文件部分系统调用为基础设计一个简易的图书管理系统。
要求实现:图书的录入、查询、借阅、清理、统计等功能、还要实现对每天的借阅情况进行统计并打印出统计报表,操作界面要尽量完善。
图书资料信息必须保存在文件中。
2、信号通信与进程控制(l)进程的创建:编写一段程序,使用系统调用fork()创建两个或多个子进程。
当此程序运行时,在系统中有一个父进程和其余为子进程在活动。
(2)进程的控制:在程序中使用系统调用lockf()来给每一个进程加锁,实现进程之间的互斥。
(3)进程通信:①软中断通信;
②在程序中使用实例signal(SIGINT,SIG_IGN)和signal(SIGQUIT,SIG_IGN)进行通信操作,观察执行结果,并分析原因。
(4)软中断的捕获与重定义。
首先定义一个服务函数function(),然后利用signal(sig,function)系统调用来实现中断的捕获与改道。
(5)使用操作系统保留给用户的信号SIGUSR1和SIGUSR2进行通信。
(6)扩展程序,使之成为信号或事件驱动的应用程序。
3、管道通信利用UNIX系统提供的管道机制实现进程间的通信。
(1)管道通信。
利用pipe()和lockf()系统调用,编写程序,实现同族进程间的通信。
使用系统调用pipe()建立一条管道线;
创建子进程P1、P2、…。
子进程Pi分别向管道各写信息,而父进程则从管道中读出来自于各子进程的信息,实现进程家族间无名管道通讯。
扩展之,使之成为客户/服务器模式,并完成一定的任务(自己定义)。
(2)命名管道通信:利用mkfifo(name,mode)或mknod(name,mode,0)创建一个命名管道,然后利用它和文件部分系统调用实现不同进程间的通信。
改造之,使之成为客户/服务器模式,并完成一定的任务(自己定义)。
4、进程间通信(IPC):消息机制(1)消息的创建、发送和接收使用系统调用msgget(),msgsnd(),msgget(),及msgctl()编制一长度为1K的消息发送和接收的程序。
1)为了便于操作和观察结果,用一个程序作为“引子”,先后fork()两个子进程,SERVER和CLIENT,进行通信。
SERVER和CLIENT也可分别为2个各自独立的程序。
2)SERVER端建立一个Key为175的消息队列,等待其他进程发来的消息。
当遇到类型为1的消息,则作为结束信号,取消该队列,并退出SERVER。
SERVER每接收到一个消息后显示一句“(server)received”。
3)CLIENT端使用key为175的消息队列,先后发送类型从10到1的消息,然后退出。
最后的一个消息,即是SERVER端需要的结束信号。
CLIENT每发送一条消息后显示一句“(client)sent”。
4)父进程在SERVER和CLIENT均退出后结束。
(2)功能扩展:在sever端创建一个服务函数,从而实现C/S通讯要求SERVER每接收到一次数据后不仅仅显示“(server)received”,而是做一些其它事情,比如读取或查询某个文件,或者执行一个shell命令等。
此功能可由设计者自己定义。
在此基础上可以扩展客户端,比如设计一个菜单界面,接收不同的选项,并发送到服务器端,请求对方提供服务。
5、进程间通信(IPC):共享内存机制(1)共享存储区的创建,附接和断接使用系统调用shmget(),shmat(),msgdt(),shmctl(),编制一长度为1K的消息发送和接收的程序。
1)为了便于操作和观察结果,用一个程序作为“引子”,先后fork()两个子进程,SERVER和CLIENT,进行通信。
SERVER和CLIENT也可分别为2个各自独立的程序。
2)SERVER端建立一个Key为375的共享区,并将第一个字节置为-1,作为数据空的标志,等待其他进程发来的消息。
当该字节的值发生变化时,表示收到了信息,并进行处理。
然后再次把它的值设为-1。
如果遇到的值为0,则视为结束信号,取消该队列,并退出SERVER。
SERVER每接收到一次数据后显示“(server)received”。
3)CLIENT端建立一个Key为375的共享区,当共享取得第一个字节为-1时,SERVER端空闲,可发送请求。
CLIENT随即填入9到0。
期间等待Server端的再次空闲。
进行完这些操作后,CLIENT退出。
CLIENT每发送一次数据后显示“(client)sent”。
4)父进程在SERVER和CLIENT均退出后结束。
(2)功能扩展:在sever端创建一个服务函数,从而形成C/S通讯模式要求SERVER每接收到一次数据后不仅仅显示“(server)received”,而是做一些其它事情,比如
2024/7/19 3:04:26 918KB 操作系统
1
UNIX网络编程卷2进程间通信(第2版)
2024/7/12 14:26:54 42.03MB C语言
1
linuxc进程间通信共享内存的操作源代码
2024/6/14 18:57:02 6KB linux
1
Linux经典书-UNP第2卷:进度间的通信-第2版-中文版-带目录-高手必备!
2024/4/21 4:20:31 14.69MB UNP UNIX网络编程 Linux经典
1
共 49 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡