这是一个运动控制仿真程序,核心集成:1:DDA插补运动算法。
2:C类刀补算法。
通过滚动鼠标滚轮,您可以自由缩放视图大小,并支持实时路径跟随。
通过放大视图,您可以观察插补算法的行进路径。
*对于初学者可用于学习理解插补运动的原理。
*对于工程师可以作为G代码的调试工具。
2025/7/1 9:32:16 1.42MB CNC 仿真 刀补 插补
1
这是电赛培训的一个题目,,能完成题目大部分要求,希望对大家有用
2025/6/22 15:09:52 4.31MB 控制 PID
1

Pelco D 和 Pelco P 协议是视频监控领域中广泛使用的两种闭路电视(CCTV)摄像机控制协议。
这些协议允许用户通过有线或无线方式远程操作摄像头,包括调整镜头焦距、倾斜角度、水平移动以及聚焦等功能。
本文将深入探讨这两种协议的核心原理、应用场景及区别。
Pelco D 协议:Pelco D 是由 Pelco 公司开发的一种模拟控制协议,主要用于驱动支持该协议的摄像机和云台。
协议的主要特点包括精确的定位能力、多级速度控制以及平滑的运动控制。
它支持多种命令,如预设点设置、连续扫描、巡航路径规划等。
Pelco D 协议通常通过 RS-422 或 RS-485 串行通信接口实现,这些接口可以支持更远距离的传输,且在多设备系统中具有良好的抗干扰性。
协议中的每个命令都由一系列二进制码组成,这些码对应特定的操作,如移动、停止、加速、减速等。
Pelco P 协议:与 Pelco D 类似,Pelco P 也是 Pelco 公司设计的另一种控制协议,但它的设计更加简单,主要关注于摄像机的水平和垂直移动。
Pelco P 协议常用于需要基本的左右、上下移动控制的场合,而不需要复杂的预设点和扫描功能。
它通常通过 RS-232 接口进行通信,适用于小型系统或远程控制需求不复杂的环境。
Pelco P 的命令结构比 Pelco D 更直观,使得安装和配置更为便捷。
两者的对比:1. 功能:Pelco D 提供更多高级功能,如预设点、巡航路径等,适合大型、复杂系统;
Pelco P 则更适合基本的移动控制。
2. 通信接口:Pelco D 常用 RS-422/485,传输距离远,适合多设备环境;
Pelco P 常用 RS-232,适用于单设备或短距离通信。
3. 控制精度:由于 Pelco D 设计更复杂,其运动控制通常更为精确。
在实际应用中,选择 Pelco D 还是 Pelco P 主要取决于系统的规模、功能需求以及预算。
对于需要精细控制和多功能集成的大型监控项目,Pelco D 显然是更优的选择;
而对于小规模或者对成本敏感的项目,Pelco P 可能更合适。
了解这两种协议的特性,有助于在设计和实施监控系统时做出明智的决策。
提供的两个英文版PDF文档可能包含了详细的协议规范、命令代码和实际操作指南。
通过阅读这些资料,你可以深入了解这两种协议的细节,从而更好地掌握如何利用它们来控制和管理你的视频监控系统。
对于那些熟悉英文的专业人士来说,这些文档是宝贵的参考资料。
如果需要中文版本,可能需要借助翻译工具或寻找已有的中文教程来辅助学习。
2025/6/19 9:27:18 32KB
1
三菱运动控制器OS机床语言SV43编程手册,三菱Q173控制器使用说明书教程
2025/6/17 11:39:34 4.13MB SV43
1
单片机学习是电子技术领域入门的重要一环,而Proteus作为一款强大的电子电路仿真软件,为初学者提供了直观的实践平台。
本资源“适合单片机初学者的12个Proteus的仿真实例”正是为帮助新手快速掌握单片机工作原理和Proteus使用方法而精心设计的。
1.**Proteus简介**:Proteus是一款集电路设计、元器件库、虚拟仿真于一体的工具,支持多种微控制器,包括常见的51系列、AVR、PIC等。
通过它,用户可以在虚拟环境中实现电路设计、编程、调试,无需实物硬件即可验证电路功能。
2.**单片机基础**:单片机是一种集成化的微处理器,包含CPU、内存、I/O接口等组件,常用于控制各种设备。
初学者应理解单片机的基本结构、工作原理及程序开发流程,如汇编语言或C语言编程。
3.**Proteus仿真流程**:使用Proteus绘制电路原理图,选择合适的元器件;
接着,编写单片机程序,并将程序烧录到虚拟单片机中;
启动仿真,观察电路运行情况,进行调试。
4.**12个仿真实例**:这些实例涵盖了单片机基础应用,可能包括LED灯闪烁、数码管显示、按键输入、串口通信等常见任务。
通过每个实例,初学者可以掌握不同硬件接口的使用和控制,理解单片机与外部设备交互的过程。
5.**LED闪烁**:这是最基础的仿真实例,通过控制单片机的I/O口,实现LED灯的亮灭,理解单片机对外部硬件的控制。
6.**数码管显示**:数码管显示实例让初学者学会如何驱动数码管,显示数字或字符,进一步了解单片机的并行输出。
7.**按键输入**:通过按键输入,学习单片机如何读取外部输入,理解中断概念,掌握中断处理机制。
8.**串口通信**:串口通信实例涉及单片机与电脑或其他单片机之间的数据交换,理解UART协议和波特率设置。
9.**定时器/计数器应用**:学习如何利用单片机内部的定时器/计数器资源,实现定时任务或频率测量等功能。
10.**模拟电路仿真**:部分实例可能包括简单的模拟电路,如RC滤波器、运算放大器等,帮助初学者结合数字电路和模拟电路进行系统设计。
11.**电机控制**:通过控制直流电机或步进电机,理解电机的工作原理和单片机在运动控制中的应用。
12.**LCD显示**:学习如何驱动液晶显示屏(LCD)显示文本或图形,进一步提升单片机的显示能力。
这12个仿真实例旨在逐步引导初学者熟悉Proteus软件,掌握单片机基本操作,为后续的项目开发打下坚实基础。
在实践过程中,除了学习每个实例的代码和电路设计,还应注重理解背后的逻辑和原理,这样才能真正提高自身的单片机编程能力。
2025/6/14 23:56:58 1.14MB
1
步进电机多轴运动控制系统的研究,步进电机多轴运动控制系统的研
1
机器人技术问世于20世纪60年代初期,自那以来,经历了那么多年的发展,取得的进步和成绩是人们有目共睹的。
本文主要研究一种六自由度机器人的轨迹规划和仿真。
首先,论文介绍了机器人的结构及基本技术参数;此外,论文对运动控制器、伺服驱动器等硬件系统做了设计,这些都是机器人控制系统所需的,还对通讯方式、上层控制软件做了介绍。
六自由度机器人的运动学分析阶段:讨论了机器人运动学的数学基础。
介绍了机器人的空间描述和坐标变换,利用Denavit和Hartenberg于1955年提出的D-H参数法来描述相邻连杆之间的坐标方向和参数,讨论了机器人逆运动学的特性。
六自由度机器人轨迹规划阶段:我们主要讨论曲线的插补操作。
插补操作的稳定性和算法优劣直接关系到机器人运行的好坏,因此对插补算法的研究是机器人研究工作中的一个不可回避的问题。
本文在关节空间与笛卡尔空间基本插补算法的基础上,提出了三次样条插补算法,并用三次样条曲线拟合机器人运动轨迹,分析了该算法的有效性和优点。
六自由度机器人仿真阶段:充分利用Matlab中的RoboticsToolbox工具箱,通过调用函数并编写程序,对机器人的运动学相关问题做了分析和计算,绘制了六自由度机器人轨迹规划曲线,建立了机器人对象模型并用工具箱提供的函数将其在三维空间中呈现出来
2025/5/3 21:57:36 4.21MB 六自由度 机器人 运动学 插补算法
1
第1章介绍了机器人技术的发展及其种类、工作原理,机器人设计、控制与编程的基本方法。
第2章和第3章介绍机器人机械系统分析的数学、力学基础。
第4章和第5章论述串联机器人操作手运动静力学和动力学。
第6章讨论机器人的轨迹规划问题,介绍了插补方式分类与轨迹控制方法,轨迹规划和连续路径轨迹的表示方法。
第7章和第8章介绍了并联机器人、轮式机器人动力学分析方法。
第9章介绍机器人运动控制问题,包括运动控制与动态控制、多关节机器人的控制、线性化模型设计机器人控制器方法、机器人手臂的自适应控制和学习控制等。
第10章介绍机器人力控制。
  本书可作为高等学校研究生或高年级本科生的机器人学相关课程的教材,也可供从事机器人研究、开发和应用的科技人员参考。
21.8MB 宋伟刚 高清
1
悬挂运动控制系统运用于msp430f169
2025/4/27 10:58:49 1.44MB 悬挂运动
1
随着科技的发展,劳动力成本持续上升,工业机器人由于具有速度快、效率高、质量稳定,抗疲劳性强,并且能够从事危险工作等的特点,因此已被广泛应用于工业、医疗、军事等行业,并发挥着越来越重要的作用。
本课题的研究对象为工业机器人的控制系统,主要研究控制系统中的运动学算法和轨迹规划算法。
在算法实现和仿真的基础上,对模型机器人进行算法的验证,在验证成功的基础上,对新松工业机器人进行运动学和轨迹规划实体测试。
2025/4/5 11:49:24 22MB LabVIEW 工业机器人
1
共 126 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡