移相全桥软开关DCDC变换器设计
2024/8/16 0:44:03 714KB 移相全桥 软开关 DCDC 变换器
1
本书是开关电源类的经典书籍,几乎所有搞电源的的人士都知道这书,但是现在书店基本不卖,是一本很好的书。
2024/7/17 7:52:47 3.23MB 电源
1
开关电源功率因数校正电路设计与应用实例1.1功率因数定义及校正技术1.1.1功率因数定义及谐波1.1.2功率因数校正技术1.2功率因数校正控制技术1.2.1功率因数校正控制方法1.2.2功率因数校正电路控制器1.2.3功率因数校正技术发展动态第2章功率因数校正电路2.1无源PFC校正技术2.1.1无源PFC电路2.1.2改进型无源PFC电路2.1.3单相无源PFC整流器的电路拓扑2.2有源功率因数校正(APFC)电路2.2.1APFC电路工作原理及分类2.2.2APFC变换器中电流型控制技术2.2.3主频同步控制PFC电路2.2.4输入电流间接控制的APFC电路2.2.5临界导电模式APFC电路2.2.6DCVM模式工作的Cuk变换器的APFC2.3复合型单开关PFC预调节器及基于SEPIC的PFC电路2.3.1复合型单开关PFC预调节器2.3.2基于SEPIC的PFC电路2.4软开关PFC电路2.4.1单相三电平无源无损软开关PFC电路2.4.2单相Boost型软开关PFC电路2.5单级隔离式PFC2.5.1单级PFC技术2.5.2单级PFC变换器的功率因数校正效果分析2.5.3单级PFC电路的直流母线电压2.5.4单级PFC变换器的设计2.5.5基于Flyboost模块的新型单级PFC电路2.5.6恒功率控制的单级PFC电路第3章功率因数校正电路集成控制器3.1UC/UCC系列PFC集成控制器3.1.1UC3852PFC集成控制器3.1.2UC3854PFC集成控制器3.1.3UC3854A/BPFC集成控制器3.1.4UCC3858PFC集成控制器3.1.5UCCx850x0PFC/PWM组合控制器3.2TDA系列PFC集成控制器3.2.1TDA16888PFC集成控制器3.2.2TDA4862PFC集成控制器3.2.3TDA16846PFC集成控制器3.3其他系列PFC集成控制器3.3.1ML4841PFC集成控制器3.3.2ML4824复合PFC/PWM控制器3.3.3FA5331P(M)/FA5332P(M)PFC集成控制器3.3.4L4981PFC集成控制器3.3.5NCP1650PFC集成控制器3.3.6HA16141PFC/PWM集成控制器3.3.7MC34262PFC集成控制器3.3.8FAN4803PFC集成控制器3.3.9CM68/69xxPFC/PWM集成控制器第4章功率因数校正电路设计实例实例1基于UC3852的PFC电路设计实例实例2基于UC3845的PFC电路设计实例实例3基于UC3854A/B的PFC电路设计实例实例4基于UCC28510的PFC电路设计实例实例5基于UCC3858的PFC电路设计实例实例6基于TOPSwitch的PFC电路设计实例实例7基于ML4824的PFC电路设计实例实例8基于TDA16888的PFC电路设计实例实例9基于MC33260的PFC电路设计实例实例10基于NCP1650/1的PFC电路设计实例参考文献
2024/6/10 0:30:08 14.01MB 开关电源 功率因数校正 PFC
1
为消除双向全桥DC-DC变换器的回流功率,实验发现电压型双重移相控制不但可以消除回流功率、降低了电流应力而且实现了软开关,在不同输出功率下都有较好的转换效率
2024/5/14 14:09:11 314KB 双向全桥DC-DC双重移相控制
1
《直流开关电源的软开关技术》等11本绝版实用电源技术丛书!
2023/11/8 14:57:16 163.85MB 开关电源 直流电源 开关技术
1
《现代整流器技术:有源功率因数校正技术》系统地介绍了功率因数校正电路的原理和应用技术。
书中详细介绍了单相功率因数校正电路原理及控制方法(包括CCM单相Boost型功率因数校正电路、CRM单相Boost型功率因数校正电路、交错并联功率因数校正电路、无桥型功率因数校正电路、低频开关功率因数校正电路)和三相功率因数校正电路原理及控制(重点介绍了电压型和电流型三相功率因数校正电路数学模型、锁相、PWM、控制技术)。
此外,《现代整流器技术:有源功率因数校正技术》还介绍了软开关功率因数校正电路的原理,包括单相、三相有源箝位零电压开关功率因数校正电路。
  《现代整流器技术:有源功率因数校正技术》可作为电气工程与自动化专业、电子信息工程专业的高年级本科生、电气工程学科的研究生参考书,也可作为从事开关电源、变频器、UPS、工业电源等电力电子装置开发、设计工程技术人员的参考书
2023/10/2 2:25:26 13.68MB 有源功率因数
1
本系统以TI公司的MSP430F5529单片机为核心,设计了一套高效率的双向DC-DC变换器。
通过闭环控制实现了恒流充电,放电,过充保护以及自动切换工作模式的功能,效率高,精度高。
该设计应用同步整流技术和准方波零电压软开关技术使效率明显提高。
单片机输出带死区的互补PWM来控制MOSFET的导通与关断,驱动电路使用TI公司的UCC27211驱动芯片驱动TI公司的导通电阻极小的CSD19506功率MOSFET,采用自举升压、浮地驱动的方式驱动高侧MOSFET。
采用电阻分压电路检测电压和TI公司的INA282AIDR电流检测芯片检测电流。
并且可以实现按键步进调节电流值,屏幕显示电压电流值的功能。
2023/9/24 11:32:42 606KB DC-DC
1
SVPWM技术是一种较新的逆变器调制技术,具有很多独特的优点,其应用范围已经跨越变频调速系统,进入各个领域。
本书系统地讲述它的调制原理、分类、算法、应用及实例,全书共分7章,内容包括变频调速与SVPWM技术、两电平SVPWM技术、两电平SVPWM技术的应用、三电子SVPWM技术、三电平SVPWM技术的应用、多电子SVPWM技术及其应用和SVPWM技术工程应用实例。
本书内容完整丰富,可作为相关大专院校学生和工程技术人员学习、应用的参考。
目录电气自动化新技术丛书序言5届电气自动化新技术丛书编辑委员会的话前言第1章变频调速与SVPWM技术1.1变频调速概述1.1.1变频调速系统1.1.2变频器1.1.3电力电子电器件1.2变频器谐波的影响与对策1.2.1输入侧谐波的影响与对策1.2.2输出侧谐波的影响及对策1.3SPWM技术1.3.1调?的原理和分类1.3.2SPWM波构成的方法1.3.3SPWM的优点与缺点1.3.4SPWM的优化1.4变频调速系统的控制1.4.1开环控制1.4.2闭环控制1.5SVPWM技术1.5.1概述1.5.2SVPWM技术的原理与分类1.5.3SVPWM技术的优点与展望参考文献第2章两电子SVPWM?术2.1两电平逆变器2.2两电乎逆变器合成电压矢量与磁链的空间分布2.2.1逆变器输出电压空间矢量的空间分布2.2.2电压矢量与磁链矢量轨迹2.3SVPWM的调制模式和算法2.3.1多个电压矢量连续切换的SVPWM模式2.3.2矢量合成法的SVPWM模式2.4对称调制模式和算法2.4.1基本原理2.4.2实施算法2.4.3对称调制模式与SPWM的比较2.4.4对称调制模式的特点和优点2.4.5对称调制模式的推广2.5两电平SVPWM的新算法2.5.1随机控制算法2.5.2免疫算法2.5.3反向传播神经网络算法2.6两电平三维空间电压矢量SVPWM控制2.6.1三相四桥臂逆变器2.6.2三相四桥臂逆变器的电压空间矢量2.6.3三相四桥臂逆变器的电压空间矢量控制参考文献第3章两电平SVPWM技术的应用3.1两电平SVPWM技术在矢量变换控制中的应用3.1.1矢量变换控制的基本原理3.1.2SVPWM矢量控制系统的构成与控制原理3.1.3矢量变换控制的特点3.2SVPWM在直接转矩控制系统中的应用3.2.1直接转矩控制的基本原理3.2.2直接转矩控制系统的构成与控制原理3.2.3电压矢量与少 的关系3.2.4采用电压矢量选择表的直接转矩控制系统3.2.5直接转矩控制的数字化3.2.6直接转矩控制的特点与存在的问题3.3直接转矩控制的改进方案3.3.1模糊控制的直接转矩控制3.3.2预测转矩的直接转矩控制3.4采用谐振极软开关逆变器的直接转矩控制3.4.1RPZVT逆变器的构成及工作原理3.4.2控制系统的构成3.4.3控制原理3.4.4仿真及实验结果3.5PWM整流器的控制3.5.1PWM整流器第4章 三电平SVPWM技术第5章 三电平SVPWM技术的应用第6章 多电平SVPWM技术及其应用第7章 SVPWM技术工程应用实例
2023/3/10 15:49:43 37.09MB SVPWM
1
资源是全桥ZVZCS软开关变换器的仿真及报告。
其中仿真采用matlab2013b搭建,打开直接能运转;
报告是word原版,文字以及图片均能编辑。
2017/6/6 5:56:40 2.1MB 软开关仿真
1
为了提高无线电能传输(WPT)的传输效率,提出了基于DE类功放的WPT系统。
通过对WPT系统建立等效模型,得出了实现电路软开关的参数设计方法,在此基础上,利用拉普拉斯变换对DE类功放的动态过程建立了复频域模型,分析了耦合线圈距离变化对WPT系统的参数和功能的影响。
最后利用PSpice仿真,得到所设计系统的最大传输效率为95.1%,功率为8.9W,验证了理论分析和设计方法的正确性。
1
共 12 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡