香港城市大学语料库(1772202字,训练集)、微软亚洲研究院语料库(1089050字,训练集)、北京大学语料库(1833177字,训练集)
2025/4/19 8:10:18 41.84MB 分词语料库
1
美国当代英语语料库COCA词频20000【包含Txt、Word、PDF】(完整)
1
以建立维吾尔语连续音素识别基础平台为目标,在HTK(基于隐马尔可夫模型的工具箱)的基础上,首次研究了其语言相关环节的几项关键技术;结合维吾尔语的语言特征,完成了用于语言模型建立和语音语料库建设的维吾尔语基础文本设计;根据具体技术指标,录制了较大规模语音语料库;确定音素作为基元,训练了维吾尔语声学模型;在基于字母的N-gram语言模型下,得出了从语音句子向字母序列句子的识别结果;统计了维吾尔语32个音素的识别率,给出了容易混淆的音素及其根源分析,为进一步提高识别率奠定了基础。
1
这是一个文本分类的语料库,主要是用于文本分类,主旨句提取,关键词提取等等应用。
2025/3/19 2:32:12 158KB 文本分类;语料库;主旨句;
1
图灵机器人语料库模板
2025/3/13 21:30:18 22KB 机器人语料
1
实用语音识别基础--21世纪高等院校技术优秀教材ISBN:711803746作者:王炳锡屈丹彭煊出版社:国防工业出版社本书从语音识别的基本理论出发,以“从理论到实用”为主线,讲解了国际上最新、最前沿的语音识别领域的关键技术,从语料库建立、语音信号预处理、特征提取、特征变换、模型建立等方面详细介绍了语音识别系统建立的过程,并针对语音识别系统实用化的问题,给出了一些改善语音识别系统性能的关键技术,力求语音识别能走出实验室,向实用发展。
  全书共分四个部分(17章),第一部分介绍语音识别的基本理论;
第二部分介绍实用语音识别系统建立的过程;
第三部分列举了语音识别系统工程化所需的关键技术;
第四部分对语音识别的4个主要应用领域进行了详尽的、深入浅出的讲解,并根据最新的研究与实验结果提供了大量的实际参数、图表,与实际工作联系紧密,具有很强的可操作性与实用性。
章节之间紧密配合、前后呼应,具有很强酶系统性。
同时,通过书中的研究过程和研究方法,读者能够在以后的研究工作中得到很大的启发。
  本书可作为高等院校理工科通信和信息处理及相关专业的高年级本科生和(硕士、博士)研究生的教材或参考书,也可供从事信息处理、通信工程等专业的研究人员参考。
  目录:  第1章绪论  1.1概述  1.2语音识别综述  1.3国内外语音识别的研究现状和发展趋势  参考文献  第一部分基本理论  第2章听觉机理和汉语语音基础  2.1概述  2.2听觉机理和心理  2.2.1语音听觉器官的生理结构  2.2.2语音听觉的心理  2.3发音的生理机构与过程  2.4汉语语音基本特性  2.4.1元音和辅音  2.4.2声母和韵母  2.4.3音调字调  2.4.4音节字构成  2.4.5汉语的波形特征  2.4.6音的频谱特性  2.4.7辅音的频谱特性  2.4.8汉语语音的韵律特征  2.5小结  参考文献  第3章语音信号处理方法--时域处理  3.1概述  3.2语音信号的数字化和预处理  3.2.1语音信号的数字化  3.2.2语音信号的预处理  3.3短时平均能量和短时平均幅度  3.3.1短时平均能量  3.3.2短时平均幅度  3.4短时过零分析  3.4.1短时平均过零率  3.4.2短时上升过零间隔  3.5短时自相关函数和平均幅度差函数  3.5.1短时自相关函数  3.5.2短时平均幅度差函数  3.6高阶统计量  3.6.1单个随机变量情况  3.6.2多个随机变量及随机过程情况  3.6.3高斯过程的高阶累积量  3.7小结  参考文献  第4章语音信号处理方法--时频处理  4.1概述  4.2短时傅里叶变换  4.2.1短时傅里叶变换的定义和物理意义  4.2.2基于短时傅里叶变换的语谱图及其时频分辨率  4.2.3短时傅里叶谱的采样  4.3小波变换  4.3.1连续小波变换  4.3.2二进小波变换  4.3.3离散小波变换  4.3.4多分辨分析  4.3.5正交小波包  4.4Wigner分布  4.4.1Wigner分布的定义  4.4.2Wigner分布的一般性质  4.4.3两个信号和妁Wigner分布  4.4.4Wigner分布的重建  4.4.5Wigner分布的实现  4.5小结  参考文献  第5章语音信号处理方法--倒谱同态处理  5.1概述  5.2复倒谱和倒谱  5.2.1定义  5.2.2复倒谱的性质  5.3语音信号的倒谱分析与同态解卷积  5.3.1叠加原理和广义叠加原理  5.3.2同态解卷特征系统和同态解卷反特征系统  5.3.3同态解卷系统  5.3.4语音的复倒谱及同态解卷  5.4避免相位卷绕的算法  5.4.1最小相位信号法  5.4.2递归法
2025/2/21 15:39:21 11.75MB 语音识别
1
基于词典的最大正向/方向匹配算法的JAVA实现,附带Demo窗体和人民日报语料库。
2025/1/30 11:02:08 254KB 分词 Java
1
序列到序列(Seq2Seq)模型已被广泛用于会话领域的响应生成。
但是,不同对话方案的要求是不同的。
例如,客户服务要求所生成的响应是特定且准确的,而聊天机器人更喜欢多样化的响应以吸引不同的用户。
通过使用一般平均可能性作为优化标准,当前的Seq2Seq模型无法满足这些多样化的要求。
结果,它通常会生成安全且平常的响应,例如“我不知道”。
在本文中,我们针对不同的对话场景提出了两个针对Seq2Seq量身定制的优化标准,即针对特定需求场景的最大生成可能性和针对不同需求场景的条件风险价值。
在Ubuntu对话语料库(Ubuntu服务场景)和中文微博数据集(社交聊天机器人场景)上的实验结果表明,我们提出的模型不仅可以满足不同场景的各种要求,而且在衡量指标上均优于传统的Seq2Seq模型。
基础评估和人工评估。
2025/1/7 9:50:33 476KB 研究论文
1
NiuTrans的开源中英平行语料库,可以用来训练机器翻译。
2025/1/3 19:40:18 45.53MB 平行语料库
1
中文语料的停用词txt文档,取自复旦大学中文语料库,文件很小
2025/1/3 18:28:27 3KB 停用词
1
共 112 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡