首先利用PCA进行降维,并利用SVM对高光谱数据进行分类,数据采用印第安纳农场数据,训练样本比例可调,设计了一个GUI
2025/3/3 13:01:25 6.28MB 高光谱 分类 matlab
1
包含车辆正负样本,以及opencv_createsamples.exe、opencv_traincascade.exe以及训练样本结果
1
车牌识别的字符识别,可以通过上面的文件中训练样本来进行。
里面含有字母,数字,和汉字,都已近包含。
2025/1/4 22:36:37 25.77MB 识别
1
针对传统支持向量机(SVM)算法在数据不均衡情况下无法有效实现故障检测的不足,提出一种基于过抽样和代价敏感支持向量机相结合的故障检测新算法。
该算法首先利用边界人工少数类过抽样技术(BSMOTE)实现训练样本的均衡。
为减少人工增加样本带来的噪声影响,利用K近邻构造一个代价敏感的支持向量机(CSSVM)算法,利用每个样本的代价函数消除噪声样本对SVM算法分类精度的影响。
将该算法应用在轴承故障检测中,并同传统的SVM算法,不同类代价敏感SVM-C算法,SVM和SMOTE相结合的算法进行比较,试验结果表明当样本不均衡时,建议算法的故障检测性能较其它算法有显著提高。
1
识别0-9十个数字,BP神经网络数字识别源代码使用说明第一步:训练网络。
使用训练样本进行训练。
(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别)第二步:识别。
首先,打开图像(256色);
再次,进行归一化处理,点击“一次性处理”;
最后,点击“R”或者使用菜单找到相应项来进行识别。
识别的结果显示在屏幕上,同时也输出到文件result.txt中。
该系统的识别率一般情况下为90%。
此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行。
具体步骤为:“256色位图转为灰度图”-“灰度图二值化”-“去噪”-“倾斜校正”-“分割”-“标准化尺寸”-“紧缩重排”。
注意,待识别的图片要与win.dat和whi.dat位于同一目录,这两文件保存训练后网络的权值参数。
具体使用请参照书中说明。
2024/12/5 8:55:53 60KB BP神经网络
1
基于SVM+HOG的人脸检测matlab程序。
内含libsvm-3.22SVM库。
资源中tgrs2013_epfifr.rar可不需要解压,可以无视。
该程序自动读取人脸库文件夹下不同人物的照片,可实现遍历文件夹及子文件夹下包含的图片,进而提取特征利用SVM训练分类识别。
这可以作为一个baseline,基础框架,在这个基础上可以提取更多特征进而提高识别精度。
由于人脸库是我们自己构造的,涉及了个人隐私,不能共享,所以本程序中人脸库文件下图像需要自己提供哦,然后自己构造相应的训练样本便可以运行了。
1
研究深度学习和卷积神经网络的同学都知道Mnist这个数据库,它是一个手写数字的图像数据集,可以用来作为网络训练的基准测试数据库。
原版数据集是以特定格式存储的四个文件,包括乱序排列的60000个训练样本与10000个测试样本,以及它们对应的标签向量。
现将其中的图片从原文件中读取出来,重新转化为png格式,并将测试集和训练集分别按0~9进行分类,并存放在各自的子文件夹中,以便各位同学进行科研与实验之用。
原数据集下载地址为:http://yann.lecun.com/exdb/mnist/
1
水果识别所需的训练样本集以及所生成的XML文件,其中训练样本集,已经经过归一化处理之后的图片集,可以直接拿过来使用。
2024/9/7 20:02:38 15.26MB 水果识别 正负样本集 样本归一化
1
基于BP网络的字母识别MATLAB仿真,该程序用MATLAB中的神经网络工具箱进行BP网络仿真,其中还带了训练样本集
2024/8/26 13:28:43 80KB MATLAB识别
1
opencv车辆检测车辆识别训练样本cascadeHOGHAARLBP纯手工抠图正样本
2024/8/24 15:18:29 9.08MB opencv 车辆检测 车辆识别 训练样本
1
共 60 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡