目录结构:准备训练样本修改源文件构建用户的训练数据文件夹训练各种曲线的绘制各种参数解析
2025/6/30 3:29:17 136KB yolo2;训练
1
PD数据库由训练和测试文件组成。
培训数据属于20名PWP(6名女性,14名男性)和20名健康人(10名女性,10名男性),他们在伊斯坦布尔大学Cerrahpasa医学院神经系上诉。
从所有主题,采取多种类型的录音(26个声音样本,包括持续元音,数​​字,单词和短句)。
从每个语音样本中提取一组26个线性和时间-基于频率的特征。
由该专家医师确定的每个患者的UPDRS((统一帕金森氏病评分量表)分数也可用于该数据集)因此,该数据集也可用于回归。
在收集由多种类型的录音组成的训练数据集并进行实验后,根据所获得的结果,我们继续在相同条件下通过同一医生的检查过程收集来自PWP的独立测试集。
在收集这个数据集的过程中,28名PD患者被要求分别只说出持续元音'a'和'o'三次,共计168次录音。
从该数据集的语音样本中提取相同的26个特征。
这个数据集可以作为一个独立的测试集来验证在训练集上获得的结果。
2025/6/28 20:20:56 20.29MB 数据库
1
opencv4.0现在支持调用TensorFlow,这是opencv4.0实现maskrcnn的训练数据集.
2025/6/28 18:29:27 169.59MB C++ TensorFlow opencv4.0 mask
1

误差反向传播(Backpropagation,简称BP)是深度学习领域中最常见的训练人工神经网络(Artificial Neural Network,ANN)的算法。
它主要用于调整网络中权重和偏置,以最小化预测结果与实际值之间的误差。
在本项目中,我们看到的是如何利用BP算法构建一个两层神经网络来识别MNIST手写数字数据集。
MNIST数据集包含60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像,代表0到9的手写数字。
BP算法通过迭代过程,对每个样本进行前向传播计算预测结果,并使用梯度下降优化方法更新权重,以提高模型在训练集上的表现。
文件"bp_two_layer_net.py"可能包含了实现BP算法的主体代码,它定义了网络结构,包括输入层、隐藏层和输出层。
"net_layer.py"可能是定义神经网络层的模块,包括前向传播和反向传播的函数。
"train_bp_two_neuralnet.py"很可能是训练脚本,调用前面的网络和训练数据,执行多次迭代以优化权重。
"buy_orange_apple.py"、"layer_naive.py"、"gradient_check.py"和"buy_apple.py"这四个文件的名称看起来与主题不太直接相关,但它们可能是辅助代码或者示例程序。
"buy_orange_apple.py"可能是一个简单的决策问题,用于帮助理解基本的逻辑操作;
"layer_naive.py"可能包含了一个基础的神经网络层实现,没有使用高级库;
"gradient_check.py"可能是用来验证反向传播计算梯度正确性的工具,这对于调试深度学习模型至关重要;
而"buy_apple.py"可能是另一个类似的小示例,用于教学或练习目的。
在BP算法中,计算图的概念很重要。
计算图将计算过程表示为一系列节点和边,节点代表操作,边代表数据。
在反向传播过程中,通过计算图的反向遍历,可以高效地计算出每个参数对损失函数的影响,从而更新参数。
在深度学习中,神经网络的优化通常依赖于梯度下降算法,它根据梯度的方向和大小来更新权重。
对于大型网络,通常采用随机梯度下降(Stochastic Gradient Descent, SGD)或其变种,如动量SGD、Adam等,以提高训练速度和避免局部最优。
总结来说,这个项目涉及了误差反向传播算法在神经网络中的应用,特别是在解决MNIST手写数字识别问题上的实践。
通过理解和实现这些文件,我们可以深入理解BP算法的工作原理,以及如何在实际问题中构建和训练神经网络。
同时,它也展示了计算图和梯度检查在深度学习模型开发中的关键作用。
2025/6/15 20:24:19 5KB
1
里面包含随机森林的matlab实现代码,并且有简单的训练数据集和测试数据集
2025/6/9 12:34:44 102KB 随机森林 matlab实现
1
基于Python3.7实现的BP神经网络算法,里面包括源程序、训练数据、测试数据、算法运行步骤和结果。
2025/5/30 14:41:35 386KB BP神经网络 源程序 python
1
印刷数字,总和10000张,7000训练,3000测试,还可以
2025/5/26 2:19:30 4.79MB 神经网络 数字识别
1
贝叶斯应用:网络评论预测食品安全案例测试集及源码:数据为2019CCF大数据与计算智能大赛提供的10000条对O2O店铺的评论文本训练数据,分为与食品安全有关和与食品安全无关两个类别。
需要根据训练集构造文本分类模型,预测2000条测试集中的评论是否与食品安全有关。
2025/5/22 1:26:25 591KB 测试数据集
1
研究了基于运动想象的皮层脑电信号ECoG的特点,针对BCI2005竞赛数据集I中的ECoG信号,通过提取频带能量获得了想象左手小指及舌头运动时的特征,结合Fisher,SVM-RFE及L0算法对特征进行选择,采用10段交叉验证的方法得到训练数据集在各维特征数下的识别正确率并选出最佳特征组合.结果表明:三种特征选择方法中SVM-RFE算法所选出的特征组合可以获得最低的识别错误率以及最低的特征维数,针对所选出的特征组合,使用训练数据集的特征对线性支持向量机进行训练,使用训练好的模型对测试数据集进行分类,识别正确率可以达到94%.
1
本资源为自己人工标记的微博语料,分为消极pos.txt,积极neg.txt各60000条,适用于机器学习情感分析,训练数据原数据
1
共 115 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡