本书针的读者是高校学生,科研工作者,图像处理爱好者。
对于这些人群,他们往往是带着具体的问题,在苦苦寻找解决方案。
为了一个小问题就让他们去学习C++这么深奥的语言几乎是不可能的。
而Python的悄然兴起给他们带来的希望,如果说C++是tex的话,那Python的易用性相当于word。
他们可以很快的看懂本书的所有代码,并可以学着使用它们来解决自己的问题,同时也能拓展自己的视野。
别人经常说Python不够快,但是对于上面的这些读者,我相信这不是问题,现在我们日常使用的PC机已经无比强大了,而且绝大多数情况下不会用到实时处理,更不会在嵌入式设备上使用。
因此这不是问题。
本书目录:目录I走进OpenCV101关于OpenCV-Python教程102在Windows上安装OpenCV-Python113在Fedora上安装OpenCV-Python12IIOpenCV中的Gui特性134图片134.1读入图像4.2显示图像4.3保存图像4.4总结一下5视频5.1用摄像头捕获视频5.2从文件中播放视频5.3保存视频6OpenCV中的绘图函数6.1画线6.2画矩形6.3画圆6.4画椭圆6.5画多边形6.6在图片上添加文字7把鼠标当画笔7.1简单演示7.2高级一点的示例8用滑动条做调色板8.1代码示例III核心操作9图像的基础操作9.1获取并修改像素值9.2获取图像属性9.3图像ROI9.4拆分及合并图像通道9.5为图像扩边(填充)10图像上的算术运算10.1图像加法10.2图像混合10.3按位运算11程序性能检测及优化11.1使用OpenCV检测程序效率11.2OpenCV中的默认优化11.3在IPython中检测程序效率11.4更多IPython的魔法命令11.5效率优化技术12OpenCV中的数学工具IVOpenCV中的图像处理13颜色空间转换5413.1转换颜色空间13.2物体跟踪13.3怎样找到要跟踪对象的HSV值?14几何变换14.1扩展缩放14.2平移14.3旋转14.4仿射变换14.5透视变换15图像阈值15.1简单阈值15.2自适应阈值15.3Otsu’s二值化15.4Otsu’s二值化是如何工作的?16图像平滑16.1平均16.2高斯模糊16.3中值模糊16.4双边滤波17形态学转换17.1腐蚀17.2膨胀17.3开运算17.4闭运算17.5形态学梯度17.6礼帽17.7黑帽17.8形态学操作之间的关系18图像梯度18.1Sobel算子和Scharr算子8718.2Laplacian算子19Canny边缘检测19.1原理19.1.1噪声去除19.1.2计算图像梯度19.1.3非极大值抑制19.1.4滞后阈值19.2OpenCV中的Canny边界检测20图像金字塔9420.1原理21OpenCV中的轮廓22直方图23图像变换24模板匹配25Hough直线变换26Hough圆环变换27分水岭算法图像分割28使用GrabCut算法进行交互式前景提取29理解图像特征30Harris角点检测31Shi-Tomasi角点检测&适合于跟踪的图像特征32介绍SIFT(Scale-InvariantFeatureTransform)33介绍SURF(Speeded-UpRobustFeatures)34角点检测的FAST算法35BRIEF(BinaryRobustIndependentElementaryFeatures)36.1OpenCV中的ORB算法37特征匹配38使用特征匹配和单应性查找对象39Meanshift和Camshift40.3OpenCV中的Lucas-Kanade光流41背景减除23841.1基础42摄像机标定43姿势估计44对极几何(EpipolarGeometry)45立体图像中的深度地图25945.1基础46K近邻(k-NearestNeighbour)47支持向量机48K值聚类49图像去噪50图像修补51使用Haar分类器进行面部检测
2025/12/10 3:40:07 4.85MB python opencv
1
自己用matlab编写的Harris角点检测的源代码,并根据附近点的关系把角点位置精确到亚像素级,内附详细说明文档。
2025/11/27 21:32:08 1.66MB Harris角点检测 亚像素 matlab
1
基于halcon角点检测实现图像拼接。
例子是三张图中进行harris角点检测,然后进行匹配,模式识别,图像融合
2025/7/2 0:18:06 571KB 图像拼接 角点检测
1
《数字图像处理——应用篇》是由谷口庆治编著的一本深入探讨图像处理技术的专业书籍,这本书在图像处理领域具有很高的权威性。
全书完整PDF版本是唯一可获取的全面资源,对于学习和研究图像处理技术的读者来说,无疑是一份宝贵的资料。
图像处理是计算机科学中的一个重要分支,它涉及了将模拟图像转换为数字形式,以及对数字图像进行各种操作以改善质量或提取有用信息。
在《数字图像处理——应用篇》中,作者谷口庆治详细阐述了这一领域的关键概念和技术,包括图像获取、颜色模型、图像增强、图像复原、图像分割、特征提取以及模式识别等核心主题。
1.**图像获取**:这部分介绍了图像传感器的工作原理,如CCD和CMOS,以及扫描仪和相机的成像过程。
同时,还涵盖了像素的概念、采样理论和量化过程。
2.**颜色模型**:书中详细讨论了RGB、CMYK、HSV、YCbCr等常见颜色模型,以及它们在不同应用场景下的选择和转换方法。
3.**图像增强**:通过滤波器、直方图均衡化等手段改善图像的视觉效果,提升图像质量,这部分包括线性和非线性滤波、对比度增强等技术。
4.**图像复原**:针对图像退化问题,如噪声、模糊等,提出了一系列恢复技术,如Wiener滤波、反卷积等。
5.**图像分割**:这是图像分析的关键步骤,包括阈值分割、区域生长、边缘检测等方法,用于将图像划分为有意义的部分。
6.**特征提取**:为了识别和理解图像,需要从图像中提取有意义的特征,如角点、边缘、纹理和形状,这些特征可用于后续的模式识别和对象识别。
7.**模式识别**:利用机器学习算法,如支持向量机、神经网络、决策树等,对图像中的模式进行分类和识别,是图像处理领域的高阶应用,广泛应用于OCR文字识别、人脸识别、医学影像分析等领域。
8.**OCR文字识别**:光学字符识别技术是模式识别的一个实例,通过识别图像中的文字并转化为可编辑文本,该技术在文档自动化处理、图书数字化等方面有着广泛的应用。
压缩包中的文件名表明资源分为了三个部分:`数字图像处理——应用篇.part1.rar`、`数字图像处理——应用篇.part2.rar`和`数字图像处理——应用篇.part3.rar`。
通常,这种分卷压缩格式是为了便于大文件的传输和存储,用户需要下载所有部分并使用合适的解压工具(如WinRAR或7-Zip)合并解压,才能获得完整的PDF文件。
《数字图像处理——应用篇》是一本涵盖广泛、深度适中的教材,适合计算机视觉、图像处理、模式识别等相关领域的学生和研究人员。
通过学习本书,读者不仅可以掌握基本的图像处理技术,还能了解其在实际应用中的策略和方法,为进入这个领域的深入研究打下坚实基础。
1

在计算机视觉领域,相机标定是一项至关重要的任务,它能够帮助我们校正图像畸变,获取相机的内在参数,从而实现精确的三维重建和物体定位。
Tsai的标定方法是一种早期提出的、广泛应用于相机标定的经典算法,由Richard Tsai在1987年提出。
本篇文章将深入探讨Tsai的相机标定方法及其在Matlab环境下的实现。
我们来理解Tsai的相机标定理论基础。
该方法基于多视图几何,通过一组已知坐标点(通常是在平面棋盘格上的特征点)在图像中的投影,来求解相机的内在参数矩阵和外在参数矩阵。
内在参数包括焦距、主点坐标和径向畸变系数,而外在参数则表示相机相对于标定板的位姿。
Tsai的标定流程主要包括以下几个步骤:1. 数据采集:拍摄多张包含标定板的图片,确保标定板在不同角度和位置出现,以获取丰富的视图信息。
2. 特征检测:在每张图片中检测并提取标定板的角点,常用的方法有角点检测算法,如Harris角点检测或Shi-Tomasi角点检测。
3. 建立世界坐标与像素坐标的对应关系:将标定板角点在世界坐标系中的位置与在图像中的像素坐标对应起来。
4. 线性化问题:通过极几何约束,将非线性问题线性化,可以使用高斯-牛顿法或Levenberg-Marquardt法进行迭代优化。
5. 求解参数:求解内在参数矩阵K和外在参数矩阵R、t,其中R表示旋转矩阵,t表示平移向量。
6. 校正与验证:利用求得的参数对图像进行畸变校正,并通过重投影误差来评估标定结果的准确性。
在Matlab环境下实现Tsai的标定方法,可以充分利用其强大的数学计算能力和可视化功能。
需要编写代码来完成上述的数据采集和特征检测。
然后,利用内置的优化工具箱进行参数估计。
可以绘制图像和标定板的重投影误差,以直观地查看标定效果。
在提供的压缩包文件e19bb35c303d499aa5c2568a73f0a35f中,可能包含了实现上述过程的Matlab源代码。
代码可能分为几个部分,包括角点检测、标定板坐标匹配、线性化优化以及参数解算等模块。
用户可以通过阅读和运行这些代码,理解Tsai标定方法的工作原理,并将其应用到自己的项目中。
Tsai的相机标定方法是计算机视觉中的一个经典算法,它通过解决非线性优化问题,实现了相机参数的有效估计。
在Matlab环境下,我们可以方便地实现这一算法,对相机进行标定,为后续的视觉应用提供准确的先验信息。
对于初学者来说,理解和实践这个方法,不仅可以加深对计算机视觉原理的理解,也能提高编程和调试能力。
2025/6/20 1:32:22 5KB
1
主要功能是:打开图像彩色变灰阶邻域平均选择阈值腐蚀图像缩小启动摄像头恢复图像图像反相Gauss滤波自适应阈值法膨胀径向梯度打开AVI文件关闭当前窗口垂直镜像中值滤波全局阈值法开运算Canny算法视频解冻保存当前位图水平镜像Sobel算法外接矩形闭运算种子填充视频冻结最近文件180度旋转Laplace算法最小面积矩形形态学梯度金字塔图像分割多图像平均恢复原始图像30度旋转点集凸包顶帽变换椭圆曲线拟合关闭视频当前画面存盘亮度变换区域凸包波谷检测Snake原理选择分辨率退出图像直方图轮廓跟踪分水岭原理动态边缘检测直方图均衡化距离变换角点检测L_K光流跟踪
2025/4/28 10:16:08 7.98MB MFC opencv
1
激光雷达数据采集或读取、显示、直线拟合、角点提取、圆弧拟合、位姿解算等
2025/4/27 15:22:39 26KB 激光雷达
1
基于harris角点特征提取的matlab图像拼接程序,根据harris角点法,提取2张图像的特征点,然后匹配2图像特征点,找到正确位移量,进行图像拼接。
2025/3/24 2:51:52 441KB matlab Harris角点 图像拼接 特征提取
1
使用matlab编写的harris角点提取程序。
需要自己添加一个main函数,或者在本程序稍微一改就可以了。
程序里的border是用来去掉边界的。
2025/2/19 7:23:46 1KB harris matlab
1
本程序只是一个简单的demo,里面包含了Opencv对HARRIS,SHI_TOMASI,FAST,SURF,SIFT算法的实现,初学着可以看看。
2025/1/28 18:01:53 4.72MB 角点检测 Harris SIFT SURF
1
共 68 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡