Hopfield神经网络解决TSP问题利用神经网络解决组合优化问题是神经网络应用的一个重要方面。
所谓组合优化问题,就是在给定约束条件下,使目标函数极小(或极大)的变量组合问题。
将Hopfield网络应用于求解组合优化问题,把目标函数转化为网络的能量函数,把问题的变量对应到网络的状态。
这样,当网络的能量函数收敛于极小值时,问题的最优解也随之求出。
由于神经网络是并行计算的,其计算量不随维数的增加而发生指数性“爆炸”,因而对于优化问题的高速计算特别有效。
2024/6/16 16:58:18 1.99MB 神经网络 TSP问题
1
目录第1章线性神经网络的工程应用1.1系统辨识的MATLAB实现1.2自适应系统辨识的MATLAB实现1.3线性系统预测的MATLAB实现1.4线性神经网络用于消噪处理的MATLAB实现第2章神经网络预测的实例分析2.1地震预报的MATLAB实现2.1.1概述2.1.2地震预报的MATLAB实例分析2.2交通运输能力预测的MATLAB实现2.2.1概述2.2.2交通运输能力预测的MATLAB实例分析2.3农作物虫情预测的MATLAB实现2.3.1概述2.3.2农作物虫情预测的MATLAB实例分析2.4基于概率神经网络的故障诊断2.4.1概述2.4.2基于PNN的故障诊断实例分析2.5基于BP网络和Elman网络的齿轮箱故障诊断2.5.1概述2.5.2基于BP网络的齿轮箱故障诊断实例分析2.5.3基于Elman网络的齿轮箱故障诊断实例分析2.6基于RBF网络的船用柴油机故障诊断2.6.1概述2.6.2基于RBF网络的船用柴油机故障诊断实例分析第3章BP网络算法分析与工程应用3.1数值优化的BP网络训练算法3.1.1拟牛顿法3.1.2共轭梯度法3.1.3LevenbergMarquardt法3.2BP网络的工程应用3.2.1BP网络在分类中的应用3.2.2函数逼近3.2.3BP网络用于胆固醇含量的估计3.2.4模式识别第4章神经网络算法分析与实现4.1Elman神经网络4.1.1Elman神经网络结构4.1.2Elman神经网络的训练4.1.3Elman神经网络的MATLAB实现4.2Boltzmann机网络4.2.1BM网络结构4.2.2BM网络的规则4.2.3用BM网络解TSP4.2.4BM网络的MATLAB实现4.3BSB模型4.3.1BSB神经模型概述4.3.2BSB的MATLAB实现第5章预测控制算法分析与实现5.1系统辨识5.2自校正控制5.2.1单步输出预测5.2.2最小方差控制5.2.3最小方差间接自校正控制5.2.4最小方差直接自校正控制5.3自适应控制5.3.1MIT自适应律5.3.2MIT归一化算法第6章改进的广义预测控制算法分析与实现6.1预测控制6.1.1基于CARIMA模型的JGPC6.1.2基于CARMA模型的JGPC6.2神经网络预测控制的MATLAB实现第7章SOFM网络算法分析与应用7.1SOFM网络的生物学基础7.2SOFM网络的拓扑结构7.3SOFM网络学习算法7.4SOFM网络的训练过程7.5SOFM网络的MATLAB实现7.6SOFM网络在实际工程中的应用7.6.1SOFM网络在人口分类中的应用7.6.2SOFM网络在土壤分类中的应用第8章几种网络算法分析与应用8.1竞争型神经网络的概念与原理8.1.1竞争型神经网络的概念8.1.2竞争型神经网络的原理8.2几种联想学习规则8.2.1内星学习规则8.2.2外星学习规则8.2.3科荷伦学习规则第9章Hopfield神经网络算法分析与实现9.1离散Hopfield神经网络9.1.1网络的结构与工作方式9.1.2吸引子与能量函数9.1.3网络的权值设计9.2连续Hopfield神经网络9.3联想记忆9.3.1联想记忆网络9.3.2联想记忆网络的改进9.4Hopfield神经网络的MATLAB实现第10章学习向量量化与对向传播网络算法分析与实现10.1学习向量量化网络10.1.1LVQ网络模型10.1.2LVQ网络学习算法10.1.3LVQ网络学习的MATLAB实现10.2对向传播网络10.2.1对向传播网络概述10.2.2CPN网络学习及规则10.2.3对向传播网络的实际应用第11章NARMAL2控制算法分析与实现11.1反馈线性化控制系统原理11.2反馈线性控制的MATLAB实现11.3NARMAL2控制器原理及实例分析11.3.1NARMAL2控制器原理11.3.2NARMAL2控制器实例分析第12章神经网络函数及其导函数12.1神经网络的学习函数12.2神经网络的输入函数及其导函数12.3神经网络的性能函数及其导函数12.3.1性能函数12.3.2性能函数的导函数第13章Simulink神经网络设计13.1Simulink交互式仿真集成环境13.1.1Simulink模型创建1
2024/3/1 2:25:47 10.12MB MATLAB R2016a 神经网络 案例分析
1
Graph-Cut算法是图像及视频中经典且有效的前景和背景分离算法,针对其计算量较大导致实时性不佳、前景和背景颜色相似时分割结果易出现shrinkingbias现象的问题,提出一种改进算法.该算法利用Mean-Shift技术对图像进行预处理,将原图像表示成基于区域的、而不是基于像素的图结构,预处理结果还可应用于后续的前景和背景颜色分布估计过程,使得计算量大大下降;在能量函数中引入了具有自适应权值调节功能的连通性约束项,有效地改善了shrinkingbias现象,提高了分割结果的精确性.实验结果表明,文中算法具有良好的实时交互性,且分割效果更加稳定和精确.
1
亚像元制图是在空间相关性原理的基础上利用低分辨率的软分类结果获得比输入遥感影像更高空间分辨率的土地覆被图。
如何精确地描述地物的空间相关性特征是获得高精度亚像元制图结果的关键。
目前的亚像元制图方法主要有两种描述空间相关性特征的方式。
第一种是从邻域亚像元中提取的亚像元级空间相关性特征;
第二种是从邻域像元中提取的像元级空间相关性特征。
本资源利用HNN获取亚像元结果的最小能量函数,实现遥感图像亚像元定位
2023/10/11 10:21:56 17KB MATLAB
1
以单机无穷大零碎为例,对发电机采用励磁控制策略,设计了一种能量函数控制策略,该控制策略通过励磁对发电机的有功和无功进行控制。
2021/11/10 18:15:06 325KB matlab 能量函数
1
基于MovieLens数据集,采用随机梯度下降算法优化最小化能量函数的概率矩阵分解Python源代码,本人做实验的源代码ProbabilisticMatrixFactorization
2019/11/19 18:15:44 749KB 概率矩阵分解
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡