【算法设计与分析】是计算机科学中的核心课程,主要探讨如何有效地解决问题并设计高效计算过程。
这门课程由中国大学MOOC提供,由北京航空航天大学(北航)的专家讲授,旨在帮助学生理解和掌握基础算法及其分析方法。
通过学习这门课程,学生将能够运用所学知识解决实际问题,提升编程能力,以及对复杂度理论有深入的理解。
课程内容可能涵盖以下几个方面:1.**排序算法**:包括经典的冒泡排序、插入排序、选择排序、快速排序、归并排序和堆排序等,以及更高效的算法如计数排序、桶排序和基数排序。
这些算法的比较和分析有助于理解不同情况下的最佳选择。
2.**搜索算法**:如深度优先搜索(DFS)、广度优先搜索(BFS)、Dijkstra算法和Floyd-Warshall算法,用于解决图论问题和最短路径寻找。
3.**动态规划**:这是解决多阶段决策问题的有效方法,例如斐波那契序列、背包问题、最长公共子序列和最短编辑距离等。
4.**贪心算法**:在每一步都选择局部最优解,以期达到全局最优。
典型应用如霍夫曼编码和Prim或Kruskal的最小生成树算法。
5.**分治策略**:将大问题分解为小问题,然后递归地解决。
典型的例子有归并排序、快速排序和大整数乘法。
6.**回溯法与分支限界**:用于在大规模搜索空间中找到解决方案,如八皇后问题和N皇后问题。
7.**图论与网络流**:包括最大流问题、最小割问题,以及Ford-Fulkerson和Edmonds-Karp算法。
8.**数据结构**:如链表、队列、栈、树(二叉树、平衡树如AVL和红黑树)、哈希表等,它们是算法的基础。
9.**复杂度理论**:介绍时间复杂度和空间复杂度的概念,以及P类和NP类问题,理解算法效率的重要性。
课程链接提供的博客可能包含课程的代码实现,这对于理解算法的实际操作和优化至关重要。
实践是检验和加深理论知识的最好方式。
学生可以通过这些代码实现来锻炼编程技能,同时理解算法在真实场景中的表现。
"中国大学MOOC-算法设计与分析"是一门全面介绍算法和分析技巧的课程,对于计算机科学专业的学生以及对算法感兴趣的任何人都极具价值。
通过学习,不仅可以掌握多种算法,还能培养问题解决和分析能力,为未来的学术研究或职业发展奠定坚实基础。
2025/4/26 11:14:57 30.82MB 算法设计与分析 基础算法
1
数据结构算法演示(Windows版)使用手册一、功能简介本课件是一个动态演示数据结构算法执行过程的辅助教学软件,它可适应读者对算法的输入数据和过程执行的控制方式的不同需求,在计算机的屏幕上显示算法执行过程中数据的逻辑结构或存储结构的变化状况或递归算法执行过程中栈的变化状况。
整个系统使用菜单驱动方式,每个菜单包括若干菜单项。
每个菜单项对应一个动作或一个子菜单。
系统一直处于选择菜单项或执行动作状态,直到选择了退出动作为止。
二、系统内容本系统内含84个算法,分属13部分内容,由主菜单显示,与《数据结构》教科书中自第2章至第11章中相对应。
各部分演示算法如下:1.顺序表(1)在顺序表中插入一个数据元素(ins_sqlist)(2)删除顺序表中一个数据元素(del_sqlist)(3)合并两个有序顺序表(merge_sqlist)2.链表(1)创建一个单链表(Crt_LinkList)(2)在单链表中插入一个结点(Ins_LinkList)(3)删除单链表中的一个结点(Del_LinkList)(4)两个有序链表求并(Union)(5)归并两个有序链表(MergeList_L)(6)两个有序链表求交(ListIntersection_L)(7)两个有序链表求差(SubList_L)3.栈和队列(1)计算阿克曼函数(AckMan)(2)栈的输出序列(Gen、Perform)(3)递归算法的演示汉诺塔的算法(Hanoi)解皇后问题的算法(Queen)解迷宫的算法(Maze)解背包问题的算法(Knap)(4)模拟银行(BankSimulation)(5)表达式求值(Exp_reduced)4.串的模式匹配(1)古典算法(Index_BF)(2)求Next函数值(Get_next)和按Next函数值进行匹配(Index_KMP(next))(3)求Next修正值(Get_nextval)和按Next修正值进行匹配(Index_KMP(nextval))5.稀疏矩阵(1)矩阵转置(Trans_Sparmat)(2)快速矩阵转置(Fast_Transpos)(3)矩阵乘法(Multiply_Sparmat)6.广义表(1)求广义表的深度(Ls_Depth)(2)复制广义表(Ls_Copy)(3)创建广义表的存储结构(Crt_Lists)7.二叉树(1)遍历二叉树二叉树的线索化先序遍历(Pre_order)中序遍历(In_order)后序遍历(Post_order)(2)按先序建二叉树(CrtBT_PreOdr)(3)线索二叉树二叉树的线索化生成先序线索(前驱或后继)(Pre_thre)中序线索(前驱或后继)(In_thre)后序线索(前驱或后继)(Post_thre)遍历中序线索二叉树(Inorder_thlinked)中序线索树的插入(ins_lchild_inthr)和删除(del_lchild_inthr)结点(4)建赫夫曼树和求赫夫曼编码(HuffmanCoding)(5)森林转化成二叉树(Forest2BT)(6)二叉树转化成森林(BT2Forest)(7)按表达式建树(ExpTree)并求值(CalExpTreeByPostOrderTrav)8.图(1)图的遍历深度优先搜索(Travel_DFS)广度优先搜索(Travel_BFS)(2)求有向图的强连通分量(Strong_comp)(3)有向无环图的两个算法拓扑排序(Toposort)关键路径(Critical_path)(4)求最小生成树普里姆算法(Prim)克鲁斯卡尔算法(Kruscal)(5)求关节点和重连通分量(Get_artical)(6)求最短路径弗洛伊德算法(shortpath_Floyd)迪杰斯特拉算法(shortpath_DIJ)9.存储管理(1)边界标识法(Boundary_tag_method)(2)伙伴系统(Buddy_system)(3)紧缩无用单元(Storage_compaction)10.静态查找(1)顺序查找(Search_Seq)(2)折半查找(Serch_Bin)(3)插值查找(Search_Ins)(4)斐波那契查找(Searc
2025/4/23 10:46:30 3.17MB 数据结构 演示 软件 c
1
假设有一个能装入总体积为T的背包和n件体积分别为w1,w2,…,wn的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1+w2+…+wn=T,要求找出所有满足上述条件的解。
命令行中输入《输入数据文件名》《输出数据文件名》详细参见实验报告
2025/3/2 1:25:48 96KB 背包问题 实验报告
1
这是老师给我的哦,里面有完整版的HDU杭电ACM课件,还附有2000-2099的解题报告跟DP背包问题,如果你是acm的初学者,那么这是必须的,看了会有很大的帮助哦!
2025/3/2 1:30:30 9.85MB HDU-acm课件打包
1
C/C++的51个经典算法实例,包含有经典的河内之塔,费式数列,巴斯卡三角形,三色旗,老鼠走迷宫,八皇后,背包问题等,每个实例都有解析以及算法代码。
2025/1/15 18:19:24 10.15MB 经典算法 C/C++
1
背包九讲,经典的背包问题讲解,不用做过多介绍,必看
2024/12/16 15:24:38 62KB DP 背包 九讲 C/C++
1
前言第1章 绪论第2章 算法复杂度与问题的下界2.1 算法的时间复杂度2.2 最好、平均和最坏情况的算法分析2.3 问题的下界2.4 排序的最坏情况下界2.5 堆排序:在最坏情况下最优的排序算法2.6 排序的平均情况下界2.7 通过神谕改进下界2.8 通过问题转换求下界2.9 注释与参考2.10 进一步的阅读资料习题第3章 贪心法3.1 生成最小生成树的Kruka1算法3.2 生成最小生成树的Prim算法3.3 单源最短路径问题3.4 二路归并问题3.5 用贪心法解决最小圈基问题3.6 用贪心法解决2终端一对多问题3.7 用贪心法解决1螺旋多边形最小合作警卫问题3.8 实验结果3.9 注释与参考3.10 进一步的阅读资料习题第4章 分治策略4.1 求2维极大点问题4.2 最近点对问题4.3 凸包问题4.4 用分冶策略构造Voronoi图4.5 voronoi图的应用4.6 快速傅里叶变换4.7 实验结果4.8 注释与参考4.9 进一步的阅读资料习题第5章 树搜索策略5.1 广度优先搜索5.2 深度优先搜索5.3 爬山法5.4 最佳优先搜素策略5.5 分支限界策略5.6 用分支限界策略解决人员分配问题5.7 用分支限界策略解决旅行商优化问题5.8 用分支限界策略解决O,1背包问题5.9 用分支限界方法解决作业调度问题5.10 A*算法5.11 用特殊的A*算法解决通道路线问题5.12 用A*算法解决线性分块编码译码问题5.13 实验结果5.14 注释与参考5.15 进一步的阅读资料习题第6章 剪枝搜索方法6.1 方法概述6.2 选择问题6.3 两变量线性规划6.4 圆心问题6.5 实验结果6.6 注释与参考6.7 进一步的闷读瓷料习题弟7章 动态规划方法7.1 资源配置问题7.2 最长公共f序列问题7.3 2序列比对问题7.4 RNA最大碱基对匹配问题7.5 0,1背包问题7.6 最优二卫树问题7.7 树的带权完垒支配问题7.8 树的带权单步图边的搜索问题7.9 用动态规划方法解决1螺旋多边形m守卫路由问题7.10 实验结果7.11 注释与参考7.12 进一步的阅读资料习题第8章 NP完全性理论8.1 关十NP完垒性理论的非形式化讨论8.2 判定问题8.3 可满足性问题8.4 NP问题8.5 库克定理8.6 NP完全问题8.7 证明NP完全性的例子8.8 2可满足性问题8.9 注释与参考8.10 进一步的阅读资料习题第9章 近似算法9.1 顶点覆盖问题的近似算珐9.2 欧几里得旅行商问题的近似算法9.3 特殊瓶颈旅行商问题的近似算珐9.4 特殊瓶颈加权K供应商问题的近似算法9.5 装箱问题的近似算法9.6 直线m中心问题的最优近似算法9.7 多序列比对问题的近似算珐9.8 对换排序问题的2近似算法9.9 多项式时间近似方案9.10 最小路径代价生成树问题的2近似算法9.11 最小路径代价生成树问题的Pns9.12 NP0完全性9.13 注释与参考9.14 进一步的阅读资料习题第10章 分摊分析10.1 使用势能函数的例子10.2 斜堆的分摊分析10.3 Av1树的分摊分析10.4 自组织顺序检索启发式方法的分摊分析10.5 配对堆及其分摊分析10.6 不相交集合并算法的分摊分析10.7 一些磁盘调度算法的分摊分析10.8 实验结果10.9 注释与参考10.10 进步的阅读资料习题第11章 随机算法11.1 解决最近点对问题的随机算珐11.2 随机最近点对问题的平均性能11.3 素数测试的随机算法11.4 模式匹配的随机算法11.5 交互证明的随机算法11.6 最小生成树的随机线性时间算法11.7 注释与参考11.8 进一步的阅读资料习题第12章 在线算法12.1 用贪心法解决在线欧几里得生成树问题12.2 在线K服务员问题及解决定义在平面树上该问题的贪心算法12.3 基于平衡策略的在线穿越障碍算法12.4 用补偿策略求解在线二分匹配问题12.5 用适中策略解决在线m台机器调度问题12.6 基于排除策略的三个计算几何问题的在线算法12.7 基于随机策略的在线生成树算法12.8 注释与参考12.
2024/11/10 12:04:19 12.76MB 算法
1
一些动态规划,最新最典型的算法!如,背包问题,钢管切割问题,最长子序列问题等等。
2024/10/16 14:11:04 4.7MB 动态规划
1
2019年11月9日软件设计师下午题答案,第一题:二手车物流系统;
第二题:新员工入职技能培训管理系统;
第三题:牙科诊所信息系统;
第四题:0-1背包问题;
第五题:文件管理系统
2024/10/14 8:41:57 1.18MB 软件设计师 答案
1
本框架提供了有关粒子群算法(PSO)和遗传算法(GA)的完整实现,以及一套关于改进、应用、测试、结果输出的完整框架。
本框架对粒子群算法与遗传算法进行逻辑解耦,对其中的改进点予以封装,进行模块化,使用者可以采取自己对该模块的改进替换默认实现组成新的改进算法与已有算法进行对比试验。
试验结果基于Excel文件输出,并可通过设定不同的迭代结束方式选择试验数据的输出方式,包括:1.输出随迭代次数变化的平均达优率数据(设定终止条件区间大于0)。
2.输出随迭代次数变化的平均最优值数据(设定终止条件区间等于0)。
本框架了包含了常用基准函数的实现以及遗传算法与粒子群算法对其的求解方案实现和对比,如TSP,01背包,Banana函数,Griewank函数等。
并提供大量工具方法,如KMeans,随机序列生成与无效序列修补方法等等。
对遗传算法的二进制编码,整数编码,实数编码,整数序列编码(用于求解TSP等),粒子群算法的各种拓扑结构,以及两种算法的参数各种更新方式均有实现,并提供接口供使用者实现新的改进方式并整合入框架进行试验。
其中还包括对PSO进行离散化的支持接口,和自己的设计一种离散PSO方法及其用以求解01背包问题的实现样例。
欢迎参考并提出宝贵意见,特别欢迎愿意协同更新修补代码的朋友(邮箱starffly@foxmail.com)。
代码已作为lakeast项目托管在GoogleCode:http://code.google.com/p/lakeasthttp://code.google.com/p/lakeast/downloads/list某些类的功能说明:org.lakest.common中:BoundaryType定义了一个枚举,表示变量超出约束范围时为恢复到约束范围所采用的处理方式,分别是NONE(不处理),WRAP(加减若干整数个区间长度),BOUNCE(超出部分向区间内部折叠),STICK(取超出方向的最大限定值)。
Constraint定义了一个代表变量约束范围的类。
Functions定义了一系列基准函数的具体实现以供其他类统一调用。
InitializeException定义了一个代表程序初始化出现错误的异常类。
Randoms类的各个静态方法用以产生各种类型的随机数以及随机序列的快速产生。
Range类的实现了用以判断变量是否超出约束范围以及将超出约束范围的变量根据一定原则修补到约束范围的方法。
ToStringBuffer是一个将数组转换为其字符串表示的类。
org.lakeast.ga.skeleton中:AbstractChromosome定义了染色体的公共方法。
AbstractDomain是定义问题域有关的计算与参数的抽象类。
AbstractFactorGenerator定义产生交叉概率和变异概率的共同方法。
BinaryChromosome是采用二进制编码的染色体的具体实现类。
ConstantFactorGenerator是一个把交叉概率和变异概率定义为常量的参数产生器。
ConstraintSet用于在计算过程中保存和获取应用问题的各个维度的约束。
Domain是遗传算法求解中所有问题域必须实现的接口。
EncodingType是一个表明染色体编码类型的枚举,包括BINARY(二进制),REAL(实数),INTEGER(整型)。
Factor是交叉概率和变异概率的封装。
IFactorGenerator参数产生器的公共接口。
Population定义了染色体种群的行为,包括种群的迭代,轮盘赌选择和交叉以及最优个体的保存。
org.lakeast.ga.chromosome中:BinaryChromosome二进制编码染色体实现。
IntegerChromosome整数编码染色体实现。
RealChromosome实数编码染色体实现。
SequenceIntegerChromosome整数序列染色体实现。
org.lakeast.pso.skeleton中:AbstractDomain提供一个接口,将粒子的位置向量解释到离散空间,同时不干扰粒子的更新方式。
AbstractF
2024/10/11 21:51:28 1.42MB 遗传算法 粒子群算法 GA PSO
1
共 75 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡