这是opencvsvm图像分类的整个工程代码,在VS2010下打开即可。
整个工程文件以及我的所有训练的图片存放在这里,需要的可以下载,自己在找训练图片写代码花了很多时间,下载完后自行解压,训练图片和测试图片可以从这免费下载http://download.csdn.net/detail/always2015/8944959,projectdata文件夹直接放在D盘就行,里面存放训练的图片和待测试图片,以及训练过程中生成的中间文件,现在这个下载object_classfication_end则是工程文件,我用的是vs2010打开即可,下面工程里有几个要注意的地方:1、在这个模块中使用到了c++的boost库,但是在这里有一个版本的限制。
这个模块的代码只能在boost版本1.46以上使用,这个版本以下的就不能用了,直接运行就会出错,这是最需要注意的。
因为在1.46版本以上中对比CsSVM这个类一些成员函数做了一些私有化的修改,所以在使用该类初始化对象时候需要注意。
2、我的模块所使用到的函数和产生的中间结果都是在一个categorizer类中声明的,由于不同的执行阶段中间结果有很多个,例如:训练图片聚类后所得到单词表矩阵,svm分类器的训练的结果等,中间结果的产生是相当耗时的,所以在刚开始就考虑到第一次运行时候把他以文件XML的格式保存下来,下次使用到的时候在读取。
将一个矩阵存入文本的时候可以直接用输出流的方式将一个矩阵存入,但是读取时候如果用输入流直接一个矩阵变量的形式读取,那就肯定报错,因为输入流不支持直接对矩阵的操作,所以这时候只能对矩阵的元素一个一个进行读取了。
3、在测试的时候,如果输入的图片太小,或者全为黑色,当经过特征提取和单词构造完成使用svm进行分类时候会出现错误。
经过调试代码,发现上述图片在生成该图片的单词的时候所得到的单词矩阵会是一个空矩阵,即该矩阵的行列数都为0,所以在使用svm分类器时候就出错。
所以在使用每个输入图片的单词矩阵的时候先做一个判断,如果该矩阵行列数都为0,那么该图片直接跳过。
2024/12/26 7:01:54 37.36MB SVM图像分类
1
复杂网络与我们的生活息息相关,它常常包括三类特征参数:度分布、聚类系数、平均路径长度,该文档是关于聚类系数计算的简单程序,很有用。
2024/12/20 17:15:36 3KB 聚类系数
1
2005年由匈牙利DepartmentofProcessEngineeringUniversityofVeszprem的BalazsBalasko,JanosAbonyiandBalazsFeil编写的模糊聚类及数据分析工具箱。
代码很全面,包括文档说明。
包括聚类算法KmeansKmedoidsFCMGKGG,聚类评价方法,聚类降维可视化方法。
其中,说明文档我做了书签,便于大家阅读。
PS:本来没打算索要资源分,因为是人家开源发布的东西。
但是,上传资源的时候点选了资源分,就没有0分的选项,最后只能选择这个最低1分了。
如果没有帐号或者资源分不够,可以联系我,我分享给你们。
或者去找原资源网站,或者去可以不收取资源分的地方下载吧!大家共同学习进步!QQ:379786867(亦可微信)
1
改进的k_均值聚类排挤小生境遗传算法(论文)。
2024/12/16 15:22:42 210KB 遗传算法 k_means
1
本地实测可以很好的运行,使用K-means聚类算法确定径向基函数的中心点
2024/12/16 4:37:37 7KB RBF,Java
1
同源搜索是生物信息学在分子生物学,蛋白质功能分析和药物开发领域的巨大应用。
为了在不断增长的数据库中执行批量搜索,基本方法是对每个原始查询运行Blast或通过将它们分组在一起来串联查询。
本文提出了一种增强的具有序列压缩和聚类的蛋白质同源性批量搜索算法(C2-BLASTP),该算法利用了查询序列和数据库之间的联合信息。
在C2-BLASTP中,查询和数据库首先通过冗余分析进行压缩。
然后根据子序列相似度对数据库进行聚类。
此后,可以在群集数据库中实现命中查找。
此外,基于潜在的命中结果来重建最终执行数据库,以减轻序列数据库不断扩大的规模。
最后,在执行数据库中进行同源批搜索。
在NCBINR数据库上进行的实验证明,在同源性准确性,搜索速度和内存使用方面,C2-BLASTP对于同源性批量搜索的有效性。
2024/12/12 13:14:20 256KB 研究论文
1
关于meanshift算法在图像分割,聚类方面的应用
2024/12/12 11:09:03 3KB mean shift matlab
1
模式识别课程中,动态聚类算法中比较容易的K-Means聚类分析的C语言实现。
1
这个算法非常容易掌握,比较好理解,用k均值聚类实现随机n个数分类到k类中。
k和n是可变的。
2024/12/1 12:23:15 4KB 可读性强
1
根据欧式距离将随即生成的点进行自动分类有界面
2024/11/23 10:10:10 58KB 聚类分析 欧式距离
1
共 485 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡