该代码是用MATLAB编写算法,并用bp神经网络计算预测值。
代码完整可用,使用时只需在代码中修改导入的excel表文件路径。
2024/1/27 11:41:05 9KB RBM 深度学习 MATLAB 受限玻尔兹曼机
1
贝叶斯网络计算用GeNle软件
2024/1/17 22:13:12 8.43MB 贝叶斯网络
1
1、输入层的每个节点,都要与的隐藏层每个节点做点对点的计算,计算的方法是加权求和+激活2、利用隐藏层计算出的每个值,再用相同的方法,和输出层进行计算。
3、隐藏层用都是用Sigmoid作激活函数,而输出层用的是Purelin。
这是因为Purelin可以保持之前任意范围的数值缩放,便于和样本值作比较,而Sigmoid的数值范围只能在0~1之间。
4、起初输入层的数值通过网络计算分别传播到隐藏层,再以相同的方式传播到输出层,最终的输出值和样本值作比较,计算出误差,这个过程叫前向传播(ForwardPropagation)。
误差信号反向传递过程
2023/12/23 21:56:22 1002KB 05
1
云计算(cloudcomputing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。
云是网络、互联网的一种比喻说法。
过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。
对云计算的定义有多种说法。
对于到底什么是云计算,至少可以找到100种解释。
目前广为接受的是中国云计算专家咨询委员会副主任、秘书长刘鹏教授,著云台团队给出的定义:“云计算是通过网络提供可伸缩的廉价的分布式计算能力”。
云计算代表了以虚拟化技术为核心、以低成本为目标的动态可扩展网络应用基础设施,是近年来最有代表性的网络计算技术与模式。
2023/10/8 1:54:39 82KB 云平台
1
边缘计算是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的开放平台,就近提供边缘智能服务,满足行业数字化在敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。
2023/9/11 4:53:51 3.94MB 工业互联网
1
程序编写InstituteofElectricalandElectronicsEngineers(IEEE)美国电气和电子工程师协会。
IEEE-33节点标准系统潮流程序的设计采用牛顿拉夫逊法潮流分布的计算原理,运用电力系统分析关于系统网络计算的相关知识,在MATLAB里编程实现潮流计算的验证。
PQ节点:这类节点的有功功率P和无功功率Q是给定的,节点电压和相位(V,δ)是待求量。
通常变电所都是这一类型的节点。
2023/7/1 7:38:30 3KB 潮流编程
1
一、引言自适应噪声抵消技术是一种能够很好的消除背景噪声影响的信号处理技术,应用自适应噪声抵消技术,可在未知外界干扰源特征,传递途径不断变化,背景噪声和被测对象声波相似的情况下,能够有效地消除外界声源的干扰获得高信噪比的对象信号。
从理论上讲,自适应干扰抵消器是基于自适应滤波原理的一种扩展,简单的说,把自适应滤波器的期望信号输入端改为信号加噪声干扰的原始输入端,而它的输入端改为噪声干扰端,由横向滤波器的参数调节输出以将原始输入中的噪声干扰抵消掉,这时误差输出就是有用信号了。
在数字信号采集、处理中,线性滤波是最常用的消除噪声的方法。
线性滤波容易分析,使用均方差最小准则的线性滤波器能找到闭合解,若噪声干扰类型为高斯噪声时,可达到最佳的线性滤波效果。
计算机论文www.lunwendingzhi.com;
机械毕业论文www.lunwenwanjia.com在实际的数字信号采集中,叠加于信号的噪声干扰往往不是单一的高斯噪声,而线性滤波器所要求的中等程度噪声偏移,使线性滤波器对非高斯噪声的滤波性能下降,为克服线性滤波器的缺点,往往采用非线性滤波器,所以本文采用神经网络对信号进行滤波处理。
二、基于BP算法和遗传算法相结合的自适应噪声抵消器在本文中,作者主要基于自适应噪声对消的原理对自适应算法进行研究,提出了一种新的算法,即BP算法和遗传算法相结合的自适应算法。
作者对BP网络的结构及算法作了一个系统的综述,分析了BP算法存在的主要缺陷及其产生的原因。
传统的BP网络既然是一个非线性优化问题,这就不可避免地存在局部极小问题,网络的极值通过沿局部改善的方向一小步进行修正,力图达到使误差函数最小化的全局解,但实际上常得到的使局部最优点。
管理毕业论文网www.yifanglunwen.com;
音乐毕业论文www.xyclww.com;
英语毕业论文www.lanrenbanjia.com;
学习过程中,下降慢,学习速度缓,易出现一个长时间的误差平坦区,即出现平台。
通过对遗传算法文献的分析、概括和总结,发现遗传算法与其它的搜索方法相比,遗传算法(GA)的优点在于:不需要目标函数的微分值;
并行搜索,搜索效率高;
搜索遍及整个搜索空间,容易得到全局最优解。
所以用GA优化BP神经网络,可使神经网络具有进化、自适应的能力。
BP-GA混合算法的方法出发点为:经济论文www.youzhiessay.com教育论文www.hudonglunwen.com;
医学论文网www.kuailelunwen.com;
(1)利用BP神经网络映射设计变量和目标函数、约束之间的关系;
(2)用遗传算法作实现优化搜索;
(3)遗传算法中适应度的计算采用神经网络计算来实现。
BP-GA混合算法的设计步骤如下:(1)分析问题,提出目标函数、设计变量和约束条件;
(2)设定适当的训练样本集,计算训练样本集;
(3)训练神经网络;
(4)采用遗传算法进行结构寻优;
(5)利用训练好的神经网络检验遗传算法优化结果。
若满足要求,计算结束;
若误差不满足要求,将检验解加入到训练样本集中,重复执行3~5步直到满足要求。
通过用短时傅立叶信号和余弦信号进行噪声对消性能测试,在单一的BP算法中,网络的训练次数、学习速度、网络层数以及每层神经元的节点数都是影响BP网络的重要参数,通过仿真实验可以发现,适当的训练次数可以使误差达到极小值,但是训练次数过多,训练时间太长,甚至容易陷入死循环,或者学习精度不高。
学习速度不能选择的太大,否则会出现算法不收敛,也不能选择太小,会使训练过程时间太长,一般选择为0.01~0.1之间的值,再根据训练过程中梯度变化和均方误差变化值确定。
基于梯度下降原理的BP算法,在解空间仅进行单点搜索,极易收敛于局部极小,而GA的众多个体同时搜索解空间的许多点,因而可以有效的防止搜索过程收敛于局部极小,只有算法的参数及遗传算子的操作选择得当,算法具有极大的把握收敛于全局最优解。
使用遗传算法需要决定的运行参数中种群大小表示种群中所含个体的数量,种群较小时,可提高遗传算法的运算速度,但却降低了群体的多样性,可能找不出最优解;
种群较大时,又会增加计算量,使遗传算法的运行效率降低。
一般取种群数目为20~100;
交叉率控制着交叉操作的频率,由于交叉操作是遗传算法中产生新个体的主要方法,所以交叉率通常应取较大值,但若过大的话,又可能破坏群体的优良模式,一般取0.4~0.99;
变异率也是影响新个体产生的一个因素,变异率小,产生个体少,变异率太大,又会使遗传算法变成随机搜索,一般取变异率为0.0001~0.1。
由仿真结果得知,GA与BP算法的混合算法不论是在运行速度还是在运算精度上都较单纯的BP算法有提高,去噪效果更加明显,在信噪比的改善程度上,混合算法的信噪
2023/6/7 6:07:05 2KB BP算法 遗传算法 matlab 源码
1
VNC(VirtualNetworkComputing,虚拟网络计算)最早是一套由英国剑桥大学ATT实验室在2002年开发的轻量型的远程控制计算机软件.RealVNCEnterprise安装包次要由两个部分组成:-VNCserver-VNCviewe用户需先将VNCserver安装在被控端的计算机上后,才能在主控端执行VNCviewer控制被控端。
VNCserver与VNCviewer支持多种操作系统.本资源为windows下安装包.可自动识别x86_64以及win32系统.为两种混合型安装包。
----------------内附注册码,文件名为:Key-RealVNCEnterprise4.6.3.txt
2016/8/19 20:04:56 5.73MB Real VCN Enterprise 4.6.3
1
从理论上分析电力系统短路毛病的电气特征,并且利用MATLAB软件进行仿真分析,进一步研究和验证电力系统短路毛病的特点
2019/5/11 14:54:13 47KB 三相短路 网络计算 matlab mdl文件
1
结合小波理论与神经网络实验设计理论,提出了一种小波神经网络的软件错误定位方法。
根据对软件运行时信息的收集与分析,通过小波神经网络计算出每条语句的可疑度值,根据可疑度的值按照由大到小的顺序逐条检测程序中的可疑语句来进行错误定位。
在实验过程中,选用SiemensSuite套件中132个预先植入错误的程序进行实验,结果表明,基于小波神经网络的软件错误定位方法具有较好的错误定位效果,能过对软件调试工作起到较大的协助作用。
1
共 11 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡