MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar(最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正)(声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计)(按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE','AIC','MDL','CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。
)………………………………以上省略……………………………………………………………………假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下:Y=x;Y(1:n)=[];m=N-n;X=[];%构造系数矩阵fori=1:m  forj=1:n      X(i,j)=xt(ni-j);  endendbeta=inv(X'*X)*X'*Y';复制代码beta即为用最小二乘法估计出的模型参数。
此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。
相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。
4.3.3AR模型阶次的选择及实验设计文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(SingularValueDecomposition,SVD)定阶法、最小预测定误差阶准则(FinalPredictionErrorCriterion,FPE)、AIC定阶准则(Akaika’sInformationtheoreticCriterion,AIC)、MDL定阶准则以及CAT定阶准则。
文献[28]中还介绍了一种BIC定阶准则。
SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。
其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。
以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分):form=1:N-1  ……    %判断是否达到所选定阶准则的要求  ifstrcmp(criterion,'FPE')    objectfun(m1)=(N(m1))/(N-(m1))*E(m1);  elseifstrcmp(criterion,'AIC')    objectfun(m1)=N*log(E(m1))2*(m1);  elseifstrcmp(criterion,'MDL')    objectfun(m1)=N*log(E(m1))(m1)*log(N);  elseifstrcmp(criterion,'CAT')    forindex=1:m1        temp=temp(N-index)/(N*E(index));    end    objectfun(m1)=1/N*temp-(N-(m1))/(N*E(m1));  end    ifobjectfun(m1)>=objectfun(m)    orderpredict=m;    break;  endend复制代码orderpredict变量即为使用相应准则预测的AR模型阶次。
(注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion)登录/注册后可看大图程序1.JPG(35.14KB,下载次数:20352)下载附件 保存到相册2009-8-2820:54上传登录/注册后可看大图程序2.JPG(51.78KB,下载次数:15377)下载附件 保存到相册2009-8-2820:54上传下面本文使用3.2.1实验设计的输出结果即20例经预处理的HRV信号序列作为实验对象,分别使用FPE、AIC、MAL和CAT定阶准则预测AR模型阶次,图4.1(见下页)为其中一例典型信号使用不同预测准则其目标函数随阶次的变化情况。
从图中可以看出,使用FPE、AIC以及MDL定阶准则所预测的AR模型阶次大概位于10附近,即阶次10左右会使相应的目标函数最小化,符合定阶准则的要求,使用CAT定阶准则预测的阶次较小,在5~10之间。
图4.2(见下页)为另一例信号的阶次估计情况,从中也可以得到同样的结论。
(注,实验信号为实验室所得,没有上传)登录/注册后可看大图图片1.JPG(28.68KB,下载次数:5674)下载附件 保存到相册2009-8-2820:54上传
2025/6/27 16:08:25 6KB matlab
1
国外经典信号处理教材,入门、提升必备。
《国外电子与通信教材系列·数字信号处理(第4版)》全面系统地阐述了数字信号处理的基础知识,其中前10章讲述了确定性数字信号处理的知识,包括离散时间信号及系统的介绍、z变换、傅里叶变换、频率分析以及滤波器设计等。
后4章则介绍了随机数字信号处理的知识,主要学习多速率数字信号处理、线性预测、自适应滤波以及功率谱估计。
《国外电子与通信教材系列·数字信号处理(第4版)》内容全面丰富、系统性强、概念清晰、叙述深入浅出,为了帮助读者深刻理解基本理论和分析方法,书中列举了大量的精选例题,同时还给出了许多基于MATLAB的仿真实验。
另外,在各章的最后还附有习题,以帮助读者进一步巩固所学知识。
2025/2/24 6:27:02 39.73MB 国外经典教材
1
国外经典信号处理教材,入门、提升必备。
《国外电子与通信教材系列·数字信号处理(第4版)》全面系统地阐述了数字信号处理的基础知识,其中前10章讲述了确定性数字信号处理的知识,包括离散时间信号及系统的介绍、z变换、傅里叶变换、频率分析以及滤波器设计等。
后4章则介绍了随机数字信号处理的知识,主要学习多速率数字信号处理、线性预测、自适应滤波以及功率谱估计。
《国外电子与通信教材系列·数字信号处理(第4版)》内容全面丰富、系统性强、概念清晰、叙述深入浅出,为了帮助读者深刻理解基本理论和分析方法,书中列举了大量的精选例题,同时还给出了许多基于MATLAB的仿真实验。
另外,在各章的最后还附有习题,以帮助读者进一步巩固所学知识。
2024/11/29 15:13:36 39.73MB 国外经典教材
1
本书全面系统地阐述了数字信号处理的基础知识,其中前10章讲述了确定性数字信号处理的知识,包括离散时间信号及系统的介绍、z变换、傅里叶变换、频率分析以及滤波器设计等。
后4章则介绍了随机数字信号处理的知识,主要学习多速率数字信号处理、线性预测、自适应滤波以及功率谱估计。
本书内容全面丰富、系统性强、概念清晰。
叙述深入浅出,为了帮助读者深刻理解基本理论和分析方法,书中列举了大量的精选例题,同时还给出了许多基于MATLAB的仿真实验。
另外,在各章的最后还附有习题,以帮助读者进一步巩固所学知识。
2024/7/18 15:12:35 117.45MB 电子信息
1
数字语音处理的MATLAB仿真程序书中系统的阐述了语音信号处理的原理、方法、技术和应用,同时给出了部分内容对应的MATLAB仿真源程序。
包括语音信号的数学模型,语音信号的短时时域分析与频域分析、语音信号的同态处理、语音信号线性预测分析与矢量量化。
介绍了语音编码、语音合成、语音识别、语音增强和语音处理的实时实现。
本书内容全面,重点突出,原理阐述深入浅出,注重理论与实际应用的结合,可读性强。
2024/7/16 18:11:44 14.88MB 语音处理 MATLAB
1
小波与傅里叶分析基础作 者:(美)AlbertBoggess,FrancisJ.Narcowich译 者:芮国胜康健等出版社:电子工业出版社出版时间:2004-1-1许多关于小波的文章和参考书籍均要求读者具有复杂的数学背景知识,本书则只要求学生具有较好的微积分以及线性代数知识,通俗易懂。
第0章内积空间0.1引言0.2内积的定义0.3L2空间和l2空间0.4Schwarz不等式与三角不等式0.5正交0.6线性算子及其伴随算子0.7最小二乘和线性预测编码0.8习题第1章傅里叶级数1.1引言1.2傅里叶级数的计算1.3傅里叶级数的收敛定理1.4习题第2章傅里叶变换2.1傅里叶变换的通俗描述2.2傅里叶变换的性质2.3线性滤波器2.4采样定理2.5不确定性原理2.6习题第3章离散傅里叶分析第4章haar小波分析4.1小波的由来4.2Haar小波4.3Haar分解和重构算法4.4小结4.5习题第5章多分辨率分析5.1多分辨率框架5.2分解和重构的实现5.3傅里叶变换准则5.4习题第6章Daubechies小波分析6.1Daubechies小波的构造6.2分类、矩和平滑性6.3计算问题6.4二进点上的尺度函数6.5习题第7章其它小波主题7.1计算复杂度7.2高维小波7.3相应的分解和重构7.4小波变换7.5习题附录A技术问题附录BMATLAB程序
1
国外经典信号处理教材,入门、提升必备。
《国外电子与通信教材系列·数字信号处理(第4版)》全面系统地阐述了数字信号处理的基础知识,其中前10章讲述了确定性数字信号处理的知识,包括离散时间信号及系统的介绍、z变换、傅里叶变换、频率分析以及滤波器设计等。
后4章则介绍了随机数字信号处理的知识,主要学习多速率数字信号处理、线性预测、自适应滤波以及功率谱估计。
《国外电子与通信教材系列·数字信号处理(第4版)》内容全面丰富、系统性强、概念清晰、叙述深入浅出,为了帮助读者深刻理解基本理论和分析方法,书中列举了大量的精选例题,同时还给出了许多基于MATLAB的仿真实验。
另外,在各章的最后还附有习题,以帮助读者进一步巩固所学知识。
1
作者:WilliamH.Press/BrianP.Flannery/SaulA.Teukolsky/WilliamT.Vetterling本书编写了300多个实用而有效的数值算法C语言程序。
其内容包括:线性方程组的求解,逆矩阵和行列式计算,多项式和有理函数的内插与外推,函数的积分和估值,特殊函数的数值计算,随机数的产生,非线性方程求解,傅里叶变换和FFT,谱分析和小波变换,统计描述和数据建模,常微分方程和偏微分方程求解,线性预测和线性预测编码,数字滤波,格雷码和算术码等。
全书内容丰富,层次分明,是一本不可多得的有关数值计算的C语言程序大全。
本书每章中都论述了有关专题的数学分析、算法的讨论与比较,以及算法实施的技巧,并给出了标准C语言实用程序。
这些程序可在不同计算机的C语言编程环境下运行。
本书可作为从事科学计算的科技工作者的工具书,计算机软件开发者的参考书,也可以作为大学本科生和研究生的参考书或教材。
2024/2/6 5:38:02 10.13MB Numerical Recipes 数值算法 c
1
基于线性预测进行基音周期的提取,采用的是自相关函数发的MATLAB
2023/8/24 5:27:50 530B 基音周期
1
声纹识别技术,形象的说法就是说话人识别技术。
它是根据人在说话时产生的波形,以及波形中反映人类心理和生理的特征参数来判断说话人的身份的技术。
本文所研究的是与文本有关的说话人确认系统。
比较了基于声道的线性预测倒谱系数(LPCC)和基于听觉特性的MEL频率倒谱系数(MFCC)参数特征,得出MFCC对环境存在更高的鲁棒性。
并运用了隐形马尔可夫模型(HMM)在MATLAB上实现了语音数字的识别仿真。
本实验系统的识别率达到了90%,验证了HMM模型识别的准确性。
1
共 19 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡